首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of high (∼1000 ppm) and low (∼200 ppm) hydroxyl (OH) content on second-order optical nonlinearity (χ(2)) in thermally poled type-III fused silica (KU-1) are studied. Type-III fused silica with low OH content poled under 275 °C with 6 kV for various poling durations shows much stronger intensity of second-harmonic generation (SHG) signals compared with that with high OH content poled under the same condition. A near-anodic uniform surface and uniform bulk χ(2) profiles which are opposite in sign are calculated to be formed in the fused silica poled longer than the optimum poling duration. A two-charge-carrier model with charge injection and non-blocking electrodes is given to explain the creation of the χ(2) profile. More OH is believed to decrease the mobility of alkali ions during poling.  相似文献   

2.
In this work, silicon nanocrystals (Si-nc) embedded in a silicon-rich silicon oxide (SRSO) matrix doped with Er3+ ions for different erbium and silicon concentrations have been deposited by electron-cyclotron resonance plasma-enhanced chemical-vapor-deposition (ECR-PECVD) technique. Their optical properties have been investigated by photoluminescence (PL) and reflectance spectroscopy.Room temperature emission bands centered at ∼1.54 and at 0.75 μm have been obtained for all samples. The most intense emission band at ∼1.54 μm was obtained for samples with concentrations of 0.45% and 39% for erbium and silicon, respectively. Moreover, it has been found that the broad emission band centered at ∼0.75 μm for all samples shows a very strong interference pattern related to the a specific sample structure and a high sample quality.  相似文献   

3.
The maximal tolerance parameters of poling period and phase-matching, temperature in second harmonic generation (SHG) using periodically poled RbTiOAsO4(PPRTA) as a function of the fundamental wavelength are investigated theoretically. The tolerance of the poling period ΔΛ of PPRTA is found larger than that of PPLN and PPKTP when the fundamental wavelength is beyond 2 μm, which reaches its maximum ΔΛmax for PPRTA at a fundamental wavelength of 2.7433 μm. However, the tolerance for the phase-matching temperature ΔT of PPRTA is found smaller than that of PPLN and PPKTP with an exception that PPRTA has a larger tolerance of the temperature or a larger temperature phase-matching bandwidth at fundamental wavelength of 2.2474 μm, where the maximum of ΔTTmax) is obtained. Furthermore, the tuning characteristics of the optical parametric processes using PPRTA for collinear quasi-phase-matching (CQPM) is analyzed. The combination of temperature tuning and poling period tuning enables a quasi-continuous wavelength tuning range of 1493.2-1593.7 nm for the signal and 3201.8-3699.2 nm for the idler, where poling period of 39 μm, 39.5 μm and 40 μm and a temperature between 20 and 120° have been employed in the corresponding theoretical analysis.  相似文献   

4.
X-ray microtomography is used to visualize, in-situ, the three-dimensional nature of the magnetic field induced macro-structures (>1 μm) inside a bulk (∼1 mm diameter) magnetite-particle-mineral oil ferrofluid sample. Columnar structures of ∼10 μm diameter were seen under a 0.35 kG applied magnetic field, while labyrinth type structures ∼4 μm in width were seen at 0.55 kG. The structures have height/width aspect ratios >100. The results show that the magnetite volume fraction is not constant within the structures and on average is considerably less than a random sphere packing model.  相似文献   

5.
Using a plasma polymerisation process with optical lithography, wet and dry etching techniques we have fabricated an organic micro-fluidic device (OMDF) on silicon/glass substrate. An asymmetric electrode array used in micro-fluidic device (MFD) with small electrode (4 μm wide) separated from the large electrode (20 μm wide) by 20 μm and 6 μm gaps in both sides respectively. In this study we have found that plasma polymerisation process is not only important for changing the surface chemical and physical properties but also has advantage in bonding of these micro devices at low temperature (∼100 °C) due to low Tg of polymeric material. The fluidic velocity measurement shows a maximum of about 450 μm/s in a 150 μm channel width of organic micro-fluidic devices after plasma surface modification.  相似文献   

6.
We investigate characteristics of gold metal strip waveguides based on long range surface plasmon polaritons (LRSPPs) along thin metal strips embedded in a polymer for practical applications at the telecommunication wavelengths of 1.31 and 1.55 μm. Guiding properties of the gold strip waveguides are theoretically and experimentally evaluated with the limited thickness and width up to ∼20 nm and ∼10 μm, respectively. The lowest propagation loss of ∼1.4 dB/cm is obtained with a 14.5-nm-thick and 2-μm-wide gold strip at 1.55 μm. With a single-mode fiber, the lowest coupling loss of ∼0.4 dB/facet is achieved with a 14.5-nm-thick and 5-μm-wide gold strip at 1.55 μm. The lowest insertion losses are obtained 8-9 dB with 1.5 cm-long gold strips of a limited thickness and width at both the wavelengths. We demonstrate a 10 Gbps optical signal transmission via the LRSPP waveguide with a 14 nm-thick, 2.5 μm-wide, and 4 cm-long gold strip. These LRSPP waveguides have potential applications for optical interconnects and communications.  相似文献   

7.
Thick crystalline zirconium oxide films were synthesized on Zircaloy-4 substrates by anodic oxidation at room temperature in NaOH solution with a stable applied voltage (300 V). The film is approximately 4.7 μm in thickness. The XPS and SEM analysis shows that the film is a three-layer structure in water, hydroxide and oxide parts. The thickness of that order is ∼0.01 μm, ∼1 μm, ∼3.7 μm, respectively. The oxide layer is composed of tetragonal and monoclinic phases with the volume ratio about 0.2. Furthermore, the thick anodic film acts as a barrier to oxygen and zirconium migrations. It effectively protects zirconium alloys against the worse corrosion. An extremely low passive current density of ∼0.018 μA/cm2 and a low oxidation weight gain of ∼0.411 mg/cm2 were also observed in the films.  相似文献   

8.
The film-under-gate field emission arrays (FEAs) have been fabricated on the glass substrates by conventional photolithography, anodic oxidation and lift-off method. SnO2 emitters were deposited on the cathode electrodes of under-gate triode by screen printing. The image of film-under-gate field emission arrays with SnO2 emitters was measured by the optical microscopy and field emission scanning electron microscopy (FESEM). The electric field distributions and electron trajectories of film-under-gate triode were simulated in the same anode voltage and different gate voltage by ANSYS. I-V characteristics of film-under-gate triode with SnO2 emitters were investigated. It indicated that the SnO2 emitters by screen printing uniformly distributed on the surface of cathode electrodes. The maximum anode current in this triode structure could come to 385 μA and the highest lightness was approximately 270 cd/m2 as the gate and anode voltage was 140 V and 2000 V, respectively, at the anode-cathode spacing of 1100 μm. Moreover, the emission current fluctuation was less than 5% for 8 h. It showed that the fabricated device has a good stability of field emission performance and long lifetime, which may lead to practical applications for field emission electron source based on flat lamp for back light units (BLUs) in liquid crystal display (LCD).  相似文献   

9.
束缚电荷对玻璃材料二阶光学非线性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
对电场极化后薄膜材料与体材料二阶光学非线性的比较研究表明,二者具有相同的极化和弛豫特性.分析了束缚电荷的形成及其对二阶光学非线性的影响,定性地从理论上指出,由束缚电荷产生的电场对薄膜及体材料的极化和弛豫过程起了决定作用. 关键词: 二阶非线性 玻璃 极化 束缚电荷  相似文献   

10.
An improved planar-gate triode with carbon nanotubes (CNTs) field emitters has been successfully fabricated by conventional photolithography, screen printing and electrophoretic deposition (EPD). In this structure, cathode electrodes and ITO arrays linked with gate electrodes were interdigitated and paralleled on the same plane although the gate electrodes and cathode electrodes were isolated by dielectric layer, a so-called improved planar-gate triode structure. An electrophoretic process was developed to selectively deposit CNTs field emitters onto cathode electrodes in the CNTs suspension by an applied voltage between the gate electrodes and cathode electrodes. The optical microscopy and FESEM image showed that the CNTs emitters with the uniform packing density were selectively defined onto the cathode electrodes. In addition, field emission characteristics of an improved planar-gate triode with CNTs field emitters were investigated. The experiment results indicated that the turn-on voltage of this triode structure at current density of 1 μA/cm2 was approximately 55 V. The anode current and gate current came to 396 μA and 325 μA, at gate voltage and anode voltage of 100 V and 4000 V, respectively and at the anode-cathode spacing of 2000 μm. The emission image became brighter and the luminous image with dot matrix on the anode plate obviously increased with the increase of the gate voltage. Moreover, the emission current fluctuation was smaller than 5% for 11 h, which indicated that the improved planar-gate triode has a good field emission performance and long lifetime.  相似文献   

11.
0.56GeS2-0.24Ga2S3-0.2KI (mol%) chalcohalide glass was prepared and second-harmonic generation was observed by the thermal poling process. Second-order optical nonlinearity in the glass was also investigated by different poling temperature, voltage and time to optimize the poling parameters to improve χ (2). The maximum χ (2) in our study as large as 3.74 pm/V was obtained under the optimized poling condition with 5.2 kV, 260°C and 120 minutes.  相似文献   

12.
Inductively coupled plasma (ICP) etching of GaN with an etching depth up to 4 μm is systemically studied by varying ICP power, RF power and chamber pressure, respectively, which results in etch rates ranging from ∼370 nm/min to 900 nm/min. The surface morphology and damages of the etched surface are characterized by optical microscope, scanning electron microscope, atomic force microscopy, cathodoluminescence mapping and photoluminescence (PL) spectroscopy. Sub-micrometer-scale hexagonal pits and pillars originating from part of the structural defects within the original GaN layer are observed on the etched surface. The density of these surface features varies with etching conditions. Considerable reduction of PL band-edge emission from the etched GaN surface indicates that high-density non-radiative recombination centers are created by ICP etching. The density of these non-radiative recombination centers is found largely dependent on the degree of physical bombardments, which is a strong function of the RF power applied. Finally, a low-surface-damage etch recipe with high ICP power, low RF power, high chamber pressure is suggested.  相似文献   

13.
A simple electrochemical process has been implemented to fabricated fractal structured leaf-like metallic zinc. The fabricated material was structurally characterized using X-ray diffraction that reveals the hexagonal unit cell structure. Also the growth of the structure is anisotropic. Field emission scanning electron microscopic images revealed clearly the leaf-like morphology of the fabricated material is fern like and ∼500 μm in length, ∼50-60 μm wide and the platelets thickness is ∼5 μm. The growth of this structure is diffusion controlled and locally accomplished with the oriented attachment. Raman shift measurement revealed the existence of surface optical phonon modes which is very significant for surface defects.  相似文献   

14.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

15.
The integration of high-performance RE-TM (NdFeB and SmCo) hard magnetic films into micro-electro-mechanical-systems (MEMS) requires their patterning at the micron scale. In this paper we report on the applicability of standard micro-fabrication steps (film deposition onto topographically patterned substrates, wet etching and planarization) to the patterning of 5-8 μm thick RE-TM films. While NdFeB comprehensively fills micron-scaled trenches in patterned substrates, SmCo deposits are characterized by poor filling of the trench corners, which poses a problem for further processing by planarization. The magnetic hysteresis loops of both the NdFeB and SmCo patterned films are comparable to those of non-patterned films prepared under the same deposition/annealing conditions. A micron-scaled multipole magnetic field pattern is directly produced by the unidirectional magnetization of the patterned films. NdFeB and SmCo show similar behavior when wet etched in an amorphous state: etch rates of approximately 1.25 μm/min and vertical side walls which may be attributed to a large lateral over-etch of typically 20 μm. Chemical-mechanical-planarization (CMP) produced material removal rates of 0.5-3 μm/min for amorphous NdFeB. Ar ion etching of such films followed by the deposition of a Ta layer prior to film crystallization prevented degradation in magnetic properties compared to non-patterned films.  相似文献   

16.
Actively mode-locked electron-beam-sustained-discharge CO laser producing a train of ∼5-15 ns (FWHM) spikes following with repetition rate 10 MHz for both single-line and multiline mode of operation in the mid-IR range of ∼5 μm was experimentally studied. Total laser pulse duration was ∼0.5 ms for both mode-locked and free-running laser. Specific output energy in multiline CO laser mode of operation was up to 20 Jl−1 Amagat−1 and the laser efficiency up to 3.5%. The active mode-locking was achieved for single-line CO laser mode of operation in spectral range 5.2-5.3 μm. This sort of radiation can be used for pumping an optical parametric amplifier for optical stochastic cooling in relativistic heavy ion collider, for laser ablation, and for studying vibrational and rotational relaxation of CO and NO molecules.  相似文献   

17.
Bulk antimony doped germanium (n-Ge) has been exposed to a dc–hydrogen plasma. Capacitance–voltage depth profiles revealed extensive near surface passivation of the shallow donors as evidenced by ∼a 1.5 orders of magnitude reduction in the free carrier concentration up to depth of ∼3.2 μm. DLTS and Laplace-DLTS revealed a prominent electron trap 0.30 eV below the conduction (EC –0.30 eV). The concentration of this trap increased with plasma exposure time. The depth profile for this defect suggested a uniform distribution up to 1.2 μm. Annealing studies show that this trap, attributed to a hydrogen-related complex, is stable up to 200 °C. Hole traps, or vacancy-antimony centers, common in this material after high energy particle irradiation, were not observed after plasma exposure, an indication that this process does not create Frenkel (VI) pairs.  相似文献   

18.
An H  Fleming S 《Optics letters》2007,32(7):832-834
A twin-hole optical fiber with pure synthetic silicate glass between the two electrode holes was thermally poled. The induced second-order nonlinearity (SON) was located at the core-cladding interface sections that were nearly parallel to the poling electric field. The polarization dependence of the induced SON suggests that nonlinearity was due to the presence of a space-charge field, which was probably formed by electron migration among the defects located at the core-cladding interface. The magnitude of the induced SON was measured to be approximately 0.06 pm /V.  相似文献   

19.
Multicrystalline silicon wafers are used for approximately half of all solar cells produced at present. These wafers typically have dislocation densities of up to ∼106 cm−2. Dislocations and associated impurities act as strong recombination centres for electron–hole pairs and are one of the major limiting factors in multicrystalline silicon substrate performance. In this work we have explored the possibility of using chemical methods to etch out the cores of dislocations from mc-Si wafers. We aim to maximise the aspect ratio of the depth of the etched structure to its diameter. We first investigate the Secco etch (1K2Cr2O7 (0.15 M): 2HF (49%)) as a function of time and temperature. This etch removes material from dislocation cores much faster than grain boundaries or the bulk, and produces tubular holes at dislocations. Aspect ratios of up to ∼7:1 are achieved for ∼15 μm deep tubes. The aspect ratio decreases with tube depth and for ∼40 μm deep tubes is just ∼2:1, which is not suitable for use in bulk multicrystalline silicon photovoltaics. We have also investigated a range of etches based on weaker oxidising agents. An etch comprising 1I2 (0.01 M): 2HF (49%) attacked dislocation cores, but its etching behaviour was extremely slow (<0.1 μm/h) and the pits produced had a low aspect ratio (<2:1).  相似文献   

20.
The influence of pulse duration on the laser-induced damage in undoped or infrared-absorbing-dye doped thin triazenepolymer films on glass substrates has been investigated for single, near-infrared (800 nm) Ti:sapphire laser pulses with durations ranging from 130 fs up to 540 fs and complementarily for infrared (1064 nm) Nd:YAG ns-laser single-pulse irradiation. The triazenepolymer material has been developed for high resolution ablation with irradiation at 308 nm. Post-irradiation optical microscopy observations have been used to determine quantitatively the threshold fluence for permanent laser damage. In contrast to our previous studies on a triazenepolymer with different composition [J. Bonse, S.M. Wiggins, J. Solis, T. Lippert, Appl. Surf. Sci. 247 (2005) 440], a significant dependence of the damage threshold on the pulse duration is found in the sub-picosecond regime with values ranging from ∼500 mJ/cm2 (130 fs) up to ∼1500 mJ/cm2 (540 fs). Other parameters such as the film thickness (50 nm and 1.1 μm samples) or the doping level show no significant influence on the material behavior upon irradiation. The results for fs- and ns-laser pulse irradiation are compared and analyzed in terms of existent ablation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号