首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear absorption and optical limiting properties of two trimeric metallo-phthalocyanines namely, 2,4,6-tris[2-oxa-9,10,16,17,23,24-hexa(hexylthio) phthalocyaninato M(II)]-s-triazine (M=Zn for compound ZnPc and Cu for compound CuPc) doped polyvinyl chloride (PVC) thin film in the nanosecond regime were investigated by using the open-aperture Z-scan technique. The measurements were performed using 4 ns pulses generated from a frequency-doubled Nd:YAG laser at 532 nm wavelength. OL parameters of the ratio of the excited state to ground state absorption cross-sections κ, the effective nonlinear absorption coefficient βeff, the linear absorption coefficient α0 and the saturation density or energy density Fsat values were determined. The results show that MPc/PVC composite displays much larger nonlinear absorption coefficient and lower saturable fluence for optical limiting when compared to the same Pc molecules in solution. The results indicated that both compounds exhibited good OL performances. ZnPc shows slightly better OL parameters than that of CuPc.  相似文献   

2.
The multilayer film of PMMA containing mononuclear octakis(mercaptopropylisobutyl-POSS) substituted phthalocyaninato-copper (CuPc) was obtained by spin-coating on quartz substrate. The nonlinear absorption and optical limiting (OL) performance of CuPc have been described using the open-aperture Z-scan technique. The measurements were performed using collimated 4 ns pulses generated from a frequency-doubled Nd:YAG laser at 532 nm wavelength. The results indicate that CuPc/PMMA composite exhibits a much larger nonlinear absorption coefficient, a lower saturable fluence and a lower absorption cross-section ratio for optical limiting when compared to the same CuPc molecules in solution. No evidence of film fatigue or degradation was observed in the CuPc/PMMA film after numerous scans at varying laser intensity. This material is a good candidate for optical limiting applications.  相似文献   

3.
This article reports structure and morphology of copper phthalocyanine (CuPc) and fluorinated copper phthalocyanine (F16CuPc) pn heterojunction. Highly ordered CuPc and F16CuPc polycrystalline thin films with the 2 0 0 plane spacing s of 1.30 and 1.56 nm, respectively, could be continuously grown via an intermediate-phase layer. Compared with CuPc, the intermediate-phase layer is much thinner when F16CuPc is used as the first layer. The rougher the first layer is, the thicker the intermediate-phase layer is. Similarly, the 2 0 0 plane spacings of the intermediate-phase layer are dependent on morphology of the first layer. Furthermore, morphology of the heterostructure is mainly dominated by that of CuPc films. Due to the thicker intermediate-phase layer in the CuPc/F16CuPc heterostructure, the thin film transistors (TFT) performance is obviously inferior to that of the F16CuPc/CuPc device.  相似文献   

4.
The molecular charge complex urea picrate (UP) was synthesized and its third order nonlinear optical properties have been investigated using a single beam Z-scan technique with nanosecond laser pulses at 532 nm. Open aperture data of the compound indicates two photon absorption at this wavelength. The nonlinear refractive index n2, nonlinear absorption coefficient β, magnitude of effective third order susceptibility χ(3), the second order hyperpolarizability γh and the coupling factor ρ have been estimated. The experimentally determined values of β, n2, Re χ(3) and Im χ(3), γh and ρ of the compound UP are 2.146 cm/GW, −1.258×10−11 esu, −1.347×10−13 esu, 0.377×10−13 esu, 0.69×10−32 esu and 0.28, respectively. The compound exhibits good optical limiting at 532 nm with the limiting threshold of 80 μJ/pulse. Our studies suggest that compound UP is a potential candidate for optical device applications such as optical limiters.  相似文献   

5.
Photophysical and nonlinear optical properties of zinc phthalocyanines (ZnPc) bearing peripheral phenoxy substituents containing different functionalized groups were studied. Fluorescence spectra corresponding to the optical transition S1 → S0 are found to be appeared at 684 or 686.4 nm. Z-scan technique reveals large nonlinearities, where the absorptive and refractive effects are separately evaluated. Saturation absorption of ZnPc-1 was observed at 632.8 nm, with a very large nonlinear absorption coefficient β = −1.36 × 10−2 cm/W. However a strong nonlinear refractive effect was found in all ZnPcs (1-4). Transmitted versus incident irradiance measurements carried out on ZnPc-1 and ZnPc-2, showed a very clear optical limiting behavior with irradiance thresholds around be 44 W/cm2 and 90 W/cm2 respectively.  相似文献   

6.
The nonlinear absorption and optical limiting (OL) performance of tetra- and octasubstituted zinc phthalocyanine complexes were described in solution and in the solid state using the open-aperture Z-scan technique. The measurements were performed using collimated 4 ns pulses generated from a frequency-doubled Nd:YAG laser at 532 nm wavelength. The polymeric films exhibit a much larger effective nonlinear absorption coefficient in comparison with solution. However, the parameters of the ratio of the excited to ground state absorption cross section and energy-dependent saturation in solution are much better compared to properties in the polymeric film. In terms of the ratio of the excited to ground state absorption cross section, the peripherally substituted complexes show better OL performance than the non-peripherally substituted derivative.  相似文献   

7.
Nonlinear absorption of carbon disulfide (CS2) was investigated by Z-scan technique and time-resolved pump-probe technique with femtosecond pulses at 400 nm wavelength. By the two techniques, we confirmed that the nonlinear absorption of CS2 arise from a combination of two-photon absorption (TPA) and the excited state absorption induced by TPA under the incident laser pulses with 400 nm wavelength. The coefficient of TPA, the absorption cross-section of low excited state and lifetime of low excited state were obtained by theoretical fitting the experimental results. The results indicated that the CS2 has good optical limiting capability at 400 nm wavelength.  相似文献   

8.
A few nm thick 3,4,9,10-perylenetetracarboxylic acid dianhydride (PTCDA) and Cu-phthalocyanine (CuPc) overlayers were thermally deposited in situ in UHV onto TiO2 (1 1 0) surface. Atomic composition of the surfaces under study was monitored using Auger electron spectroscopy (AES). The formation of the interfacial potential barrier and the structure of the unoccupied electronic states located 5-25 eV above the Fermi level (EF) was monitored using a probing beam of low-energy electrons according to the total current electron spectroscopy (TCS) method. The work function values upon the overlayer deposition changed from 4.6 to 4.9 eV at the PTCDA/TiO2 (1 1 0) interface and from 4.6 to 4.3 eV at the CuPc/TiO2 (1 1 0) interface. Band bending in the TiO2 substrate, molecular polarization in the organic film and changes in the work function due to the change in the surface composition were found to contribute to the formation of the interfacial potential barriers. Oxygen admixture related peaks were observed in the AES and in the TCS spectra of the CuPc overlayers. A mechanism of the transformations in the PTCDA and CuPc overlayers on the TiO2 (1 1 0) upon elevating temperature from 25 to 400 °C was suggested.  相似文献   

9.
The nonlinear absorption and optical limiting (OL) performance of a supramolecular hexa-phthalocyaninato-hexazinc (II) with hexylthio substituents in solution and in the solid-state have been described using the open-aperture Z-scan technique. The measurements were performed using collimated 4 ns pulses generated from a frequency-doubled Nd:YAG laser at 532 nm wavelength. The results indicated that OL performance of the investigated compound in the polymeric film is much better compared to properties in solution. With the excellent combination of OL parameters the investigated compound in the solid-state is a candidate for the use as optical limiter.  相似文献   

10.
The mechanism involved in the Tm3+(3F4)→Tb3+(7F0,1,2) energy transfer as a function of the Tb concentration was investigated in Tm:Tb-doped germanate (GLKZ) glass. The experimental transfer rate was determined from the best fit of the 3F4 luminescence decay due to the Tm→Tb energy transfer using the Burshtein model. The result showed that the 1700 nm emission from 3F4 can be completely quenched by 0.8 mol% of Tb3+. As a consequence, the 7F3 state of Tb3+ interacts with the 3H4 upper excited state of Tm3+ slighting decreasing its population. The effective amplification coefficient β(cm−1) that depends on the population density difference Δn=n(3H4)-n(3F4) involved in the optical transition of Tm3+ (S-band) was calculated by solving the rate equations of the system for continuous pumping with laser at 792 nm, using the Runge-Kutta numerical method including terms of fourth order. The population density inversion Δn as a function of Tb3+ concentration was calculated by computational simulation for three pumping intensities, 0.2, 2.2 and 4.4 kWcm−2. These calculations were performed using the experimental Tm→Tb transfer rates and the optical constants of the Tm (0.1 mol%) system. It was demonstrated that 0.2 mol% of Tb3+ propitiates best population density inversion of Tm3+ maximizing the amplification coefficient of Tm-doped (0.1 mol%) GLKZ glass when operating as laser intensity amplification at 1.47 μm.  相似文献   

11.
The intermetallic compound, YRhAl, has been prepared and is found to be isomorphic with RRhAl (R=Pr, Nd, Gd, Ho and Tm) compounds crystallizing in the orthorhombic TiNiSi-type structure (space group Pnma). Heat capacity and electrical resistivity measurements in the He-3 temperature range reveal that this compound is superconducting with a transition temperature, Tc, of 0.9 K. The electronic specific heat coefficient, γ, and the Debye temperature are found to be 6.1 mJ/mol K and 197 K, respectively. The specific heat jump at the superconducting transition is found to be consistent with the BCS weak-coupling limit. This combined with the earlier observation of superconductivity in LaRhAl (Tc=2.4 K) having a different structure than that of YRhAl, suggests that the underlying structure is not very crucial for the occurrence of superconductivity in RRhAl series of compounds.  相似文献   

12.
The infrared spectra of the 2ν1, 2ν2 and 2ν3 overtones of perchloryl fluoride, FClO3, have been recorded at high resolution using monoisotopic pure samples. Four symmetric top species have been investigated: F35Cl16O3, F37Cl16O3, F35Cl18O3 and F37Cl18O3. The vi = 2, i = 1, 2, 3 vibrationally excited states are totally symmetric, so these overtones correspond to parallel bands of medium/weak intensity, centered from 2010 to 2120 cm−1 (2ν1), from 1390 to 1430 cm−1 (2ν2) and from 1070 to 1100 cm−1 (2ν3). Most of the bands are unperturbed and their analysis was straightforward. The band origins, the rotational and centrifugal molecular constants in the v1 = 2, v2 = 2 and v3 = 2 states have been determined, with standard deviations of the fits from 0.00024 to 0.00067 cm−1. The 2ν1 overtones of F35Cl16O3 and F37Cl16O3 are perturbed by an A1/E Coriolis resonance between the v1 = 2 state and one E component of the v4 = 1, v6 = 2 manifold. The 2ν2 of F37Cl18O3 is perturbed by the same kind of interaction involving the v1 = v6 = 1 (E) state, at about 1396 cm−1. In these bands the resonance is localized on rotational levels with specific J and K values. As a consequence, a few transitions of the perpendicular bands involving the interacting levels could be identified in the spectra. A simultaneous fit of the transitions assigned to the dyads has been performed and the parameters of the excited states have been determined, including the high order Coriolis interaction coefficient . The anharmonic constants x11, x22, x33 of all the studied isotopologues of FClO3, x46 of F35Cl16O3, x46 + g46 of F37Cl16O3 and x16 of F37Cl18O3, have been derived.  相似文献   

13.
The enhancement spectrum of the collision induced absorption of D2 in its fundamental band region 2600-4000 cm−1 in binary mixtures D2-Kr was studied at 298 K for base densities of D2 in the range 9-20 amagat and for partial densities of Kr in the range 7-120 amagat. The binary absorption coefficient of the band has been determined from the measured integrated absorption coefficient and found to be 3.9 × 10−3 cm−2 amagat−2. An analysis of the experimental spectrum was carried out by assuming appropriate line-shape functions and the half-width parameters δ1, δ2, δd and δc of the long range quadrupole, and of the short range overlap induced transitions have been determined. Good agreement was obtained between the recorded spectrum of the fundamental band and the synthetic profile.  相似文献   

14.
X-ray powder diffraction (XRD) of MgPc indicated that the material in the powder form is polycrystalline with monoclinic structure. Miller indices, h k l, values for each diffraction peak in XRD spectrum were calculated. Thermal evaporation technique was used to deposit MgPc thin films. The XRD studies were carried out for MgPc thin films where the results confirm the amorphous nature for the as-deposited films. While, polycrystalline films orientated preferentially to (1 0 0) plane with an amorphous background were obtained for films annealed at 623 K for 3 h. Optical properties of MgPc thin films were characterised by using spectrophotometric measurements of transmittance and reflectance in the spectral range from 190 to 2500 nm. The refractive index, n, and the absorption index, k, were calculated. According to the analysis of dispersion curves, the parameters, namely; the optical absorption coefficient (α), molar extinction coefficient (?molar), oscillator energy (Eos), oscillator strength (f), and electric dipole strength (q2) were also evaluated. The recorded absorption measurements in the UV-vis region show two well defined absorption bands of phthalocyanine molecule; namely the Q-band and the Soret (B-band). The Q-band showed its splitting characteristic (Davydov splitting), and ΔQ was obtained as 0.15 eV. The analysis of the spectral behaviour of the absorption coefficient (α), in the absorption region revealed indirect transitions. The transport and the near onset energy gaps were estimated as respectively 2.74 ± 0.02 and 1.34 ± 0.01 eV.  相似文献   

15.
Compounds LiNi1−xSbxO2 (x=0, 0.1, 0.15, 0.2, 0.25) were synthesized by the two-step calcination method. The structural and morphological properties of the products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analysis confirms that the uniform solid solution has been formed in the as-prepared compounds without any impurities. It is shown that the crystal lattice parameters (a, c) of the Sb-doped compounds are bigger than those of pure LiNiO2 and the Sb-doped compound with x=0.2 consists of spherical-like nanoparticles with a mean grain size of 50 nm. The electrochemical performances of as-prepared samples were studied via galvanostatic charge-discharge cycling tests. The compound with x=0.2 exhibits excellent capacity retention during the charge-discharge processes due to its reinforced structural stability, and a discharge capacity of 102.4 mAh/g is still obtained in the voltage range of 2.5-4.5 V after 20 cycles. Thermal analysis further confirms that the structural stability of LiNi0.8Sb0.2O2 is superior to that of pure LiNiO2.  相似文献   

16.
Low temperature scanning tunneling microscopy (LT-STM) and scanning tunneling spectroscopy (STS) have been used to investigate adsorbed copper phthalocyanine (C32H16N8Cu) molecules on an ordered ultrathin Al2O3 film on the Ni3Al(1 1 1) surface as a function of coverage and annealing temperature. For sub-monolayer coverage and a deposition temperature of 140 K two different planar molecular adsorption configurations rotated by 30° with respect to each other were observed with submolecular resolution in the STM images. The template effect of the underlying oxide film on the CuPc orientation, however, is only weak and negligible at higher coverages. For θCuPc ≈ 1 ML, before completion of the first layer, the growth of a second layer was already observed. The measured spacing of 3.5 Å between first and second layer corresponds to the distance between the layers in the α-modification of crystalline CuPc. The molecules deposited at 140 K are thermally stable upon prolonged annealing to temperatures up to 250 K. By the use of STS the lowest unoccupied molecular orbital (LUMO) of the adsorbed copper phthalocyanine molecules has been identified at an energy of 1.2 eV above EF. The lateral distribution of the electronic states of the CuPc has been analyzed and mapped by STS.  相似文献   

17.
Temperature dependent dielectric relaxation and thermodynamic properties of polyethylene glycols HO[CH2CH2O)nH with number average molecular weight 200 (n = 4), 300 (n = 7), 400 (n = 9) and 600 (n = 14) g mol− 1 have been studied using Time Domain Reflectometry (TDR) in the frequency range 10 MHz to 20 GHz. The frequency dependence of the complex dielectric permittivity is analyzed by the Havriliak-Negami expression. The static permittivity ε0, high frequency limiting static permittivity ε, average relaxation time τ0 and thermodynamic energy parameters such as free energy, enthalpy of activation and entropy of activation have been determined. The average free energy of activation ΔFτ for PEG molecules was found to be in the range 4-5 kcal mol− 1. The values of entropy ΔSτ for PEG-200, PEG-400 and PEG-600 molecules were found to be positive while entropy ΔSτ for PEG-300 molecules was found negative, which confirms that the configuration of PEG-300 involved in the dipolar orientation has an activated state, which is more ordered than the normal state compared to PEG-200, PEG-400 and PEG-600 molecules.  相似文献   

18.
The potential organic nonlinear optical single crystal of 2,3-dimethoxy-10-oxostrychnidinium hydrogen oxalate dihydrate has been grown by slow evaporation solution growth technique (SEST) using ethanol–water solution at room temperature. The powder X-ray diffraction study reveals that the crystal belongs to orthorhombic system with non-centrosymmetric space group P212121 and the cell parameters are a = 7.61 Å, b = 10.73 Å, c = 29.49 Å, V = 2410.75 Å3. The functional groups of the synthesized compound have been identified by FT-Raman and FTIR analyses. Photoluminescence spectroscopy study is determined to explore its efficacy towards device fabrications. Birefringence measurement has been carried out in order to analyze the optical homogeneity of the grown crystal. The optical constants such as reflectance (R) and extinction coefficient (K) have been determined from the transmittance data. The relative second harmonic efficiency of the compound is found to be 4 times greater than that of KDP. DTA-DSC measurements indicate that the crystal is thermally stable up to 174 °C.  相似文献   

19.
The pure rotational spectrum of the molecular ion TiF+ in its 3Φr ground state has been measured in the range 327-542 GHz using millimeter-wave direct absorption techniques combined with velocity modulation spectroscopy. TiF+ was made in an AC discharge from a mixture of TiCl4, F2 in He, and argon. Ten transitions of this ion were recorded. In every transition, fluorine hyperfine interactions, as well as the fine structure splittings, were resolved. The fine structure pattern was found to be regular with almost equal spacing in frequency between the three spin components, in contrast to TiCl+, which is perturbed in the ground state. The data were fit with a case (a) Hamiltonian and rotational, fine structure, and hyperfine constants were determined. The bond length established for TiF+, r0 = 1.7775 Å, was found to be shorter than that of TiF, r0 = 1.8342 Å—also established from mm-wave data. The hyperfine parameters determined are consistent with a δ1π1 electron configuration with the electrons primarily located on the titanium nucleus. The nuclear spin-orbit constant a indicates that the unpaired electrons are closer to the fluorine nucleus in TiF+ relative to TiF, as expected with the decrease in bond length for the ion. The shorter bond distance is thought to arise from increased charge on the titanium nucleus as a result of a Ti2+F configuration. A similar decrease in bond length was found for TiCl+ relative to TiCl.  相似文献   

20.
The extensive investigation of the annealing effect in nitrogen atmosphere on the structural optical and electrical properties of chemically deposited CdS films on SnO2 has been performed. The as-deposited film shows 2.45 eV band gap (Eg) and decreases with increasing annealing temperature. The film annealed at 623 K having pure hexagonal phase (a = 4.14 Å, c = 6.71 Å for [1 0 0] plane) and Eg = 2.36 eV shows 10 times higher conductivity for all temperature range, and shows two different activation energies Ea = 0.114 eV and Ea = 0.033 eV for the temperature range 395 K ≤ T ≤ 515 K and 515 K ≤ T ≤ 585 K, respectively. The structural parameters such as dislocation density, strain and optical parameters such as absorption and extinction coefficient are calculated and compared for all the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号