首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An extended reach 10 Gb/s wavelength division multiplexing passive optical networks (WDM-PONs) system based on reflective semiconductor optical amplifier (RSOA) is proposed by using power pre-emphasized orthogonal frequency division multiplexing (OFDM) signal. Experimental results show that the proposed technique can effectively enhance the system performance against the limited bandwidth and chirp induced fading effect from direct modulation of RSOA. The receiver sensitivity is improved by 5 dB at the limit of BER for forward error correction (FEC) code over the 60 km and 85 km fiber transmission without any dispersion compensation module.  相似文献   

2.
We propose a new architecture for 10 Gb/s upstream traffic in TDM-PON using externally injection-locked Fabry-Perot laser diodes (FP-LDs) in each optical network unit (ONU). Four directly modulated 2.5 Gb/s FP-LDs were injection-locked by continuous wave (CW) carriers distributed from the optical line terminal (OLT). Hence, a total of 10 Gb/s upstream traffic can be achieved. Experimental results show negligible power penalty at a transmission of 25 km standard single mode fiber (SMF) without dispersion compensation. The performance of the injection-locked FP-LD is also studied.  相似文献   

3.
Here we propose a design for a novel broadband silicon electro-optic absorption modulator. The device is simply a 100 µm long silicon waveguide with a Schottky diode integrated in it. Modulation is achieved through free-carrier absorption, not interference effects, enabling operation over the entire bandwidth of the waveguide. The high overlap between the modulated carrier density and the optical mode enables high speed (> 10 Gb/s), small footprint and modulation depths of ∼ 4.6 dB.  相似文献   

4.
Lovkesh  Sandeep Singh Gill 《Optik》2011,122(11):978-985
The paper shows the design of all-optical logic gates OR, AND, NOT, NOR, XNOR, XOR at ultra high speed by using SOA. The simulations of all logic gates are obtained by XGM and FWM in SOA at 40 Gb/s and 60 Gb/s. The OR, AND, NOR logic between two data sources are obtained using a pump signal, while another logic XNOR using two data. The NOT, XOR obtained using FWM and XGM combined. Thus realization of these logics at 40 Gb/s and 60 Gb/s will lead revolution growth in optical signal processing for high-speed operation.  相似文献   

5.
We show experimentally and by simulation a performance enhancement of a directly modulated 10 Gb/s optical Orthogonal Frequency Division Multiplexing (OFDM) system due to external optical injection. The experiment is performed back to back and over 12 km of single mode fiber. The injection extends the range of linear operation of the laser and therefore extends the usable bandwidth for direct modulation formats which are susceptible to nonlinearity, such as OFDM. Nonlinearity in the system and its reduction due to injection are estimated by means of a two tone test. Additionally the performance enhancement on OFDM systems was verified in both simulation and experimentally by the comparisons of the average Bit Error Rate (BER) and Error Vector Magnitude (EVM).  相似文献   

6.
The improvement on the impact of filter concatenation effect on optical signal quality is investigated and discussed for applications in metropolitan optical networks utilizing cost-effective 10-Gb/s transmitters. The sources are low-cost conventional directly modulated lasers (DMLs), fabricated for operation at 2.5 Gb/s but modulated at 10 Gb/s. Performance improvement is achieved by using decision-feedback equalization (DFE) at the receiver end. Experimental studies consider both transient and adiabatic chirp dominated DMLs sources with different chirp characteristics. Measurements have been obtained using a recirculating loop set-up and the performance improvement is evaluated in terms of bit-error-rate (BER) versus number of loops.  相似文献   

7.
We present experimental and theoretical results on all-optical 10 and 20 Gb/s RZ to NRZ modulation format and wavelength converter based on a nonlinear optical loop mirror (NOLM). A vector model of converter was developed and the shape of converted pulses was found analytically for particular choice of polarization states. In the experiment, non-zero dispersion shifted fiber with a length 1200 m was used as a nonlinear medium. Pulses from a 10 GHz mode-locked semiconductor laser diode were modulated to form pseudorandom RZ signal and eventually time division multiplexed to 20 Gb/s. RZ pulses were subsequently converted to NRZ signal. The performance of the converter was evaluated experimentally using the data communication analyzer and bit error ratio tester.  相似文献   

8.
The optimum operating powers and wavelengths for a 40 Gb/s wavelength converter based on four-wave mixing in a semiconductor optical amplifier are inferred from experimental results. From these measurements, some general rules of thumb are derived for this kind of devices. Generally, the optimum signal power should be 10 dB lower than the pump power (−16 dB conversion efficiency) whereas the wavelength separation between the signal and the pump carrier should not be lower than about four times the signal bitrate (1.3 nm for 40 Gb/s RZ signals).  相似文献   

9.
In this paper, we optimize the inter-amplifier spacing in combination with duty cycle of RZ data format and EDFAs power so that link length of system can be maximized. The results for EDFA amplifier placement in 10 Gbps single channel dispersion managed optical communication system have been presented. By increasing the length of standard single mode fiber of dispersion 16 ps/nm/km in proportion to the increase in length of compensating fiber of dispersion −80 ps/nm/km, the pre-, post- and symmetrical-dispersion compensation schemes of the system have been compared. Further, schemes are observed at 8, 10 and 12 dBm values of EDFA power in the link with different duty cycle values of RZ optical pulse in the range of 0.2-0.8 with step size of 0.2 in relation to amplifier spacing to get lower value of bit error rate and timing jitter. The graphical results obtained show strong relationship among duty cycle of RZ optical pulse, EDFA power and, dispersion compensation scheme.  相似文献   

10.
Rajneesh Kaler 《Optik》2011,122(7):610-615
In this paper, we have analyzed the performance and feasibility for the metropolitan area network based on arrayed waveguide grating (AWG) multiplexers and arrayed waveguide grating (AWG) demultiplexers operating at the bitrate of 10 Gb/s. In the network, the data is successfully transmitted to a distance of 50 km with a very low BER of 1 × 10−40 thus improving the performance over AWG star based networks. Here, we have observed that arrayed waveguide gratings based multiplexers and demultiplexers for WDM applications prove to be capable of precise multiplexing and demultiplexing of a large number of channels with relatively low losses. This paper also presents the comparative investigation and suitability of various data formats like NRZ Rectangular, NRZ Raised cosine, RZ Rectangular, RZ Raised cosine and RZ super Gaussian for optical transmission link. It has been shown that RZ Raised cosine yields the highest value of Q, good eye opening and lowest BER.  相似文献   

11.
Anu Sheetal  Ajay K. Sharma 《Optik》2010,121(3):246-252
In this paper, 10 and 40 Gb/s optical systems have been investigated for nonreturn-to-zero (NRZ), return-to-zero (RZ), carrier-suppressed return-to-zero (CSRZ) and RZ-differential phase-shift-keying (RZ-DPSK) data formats. For the range of the optical signal power from −5 to 15 dBm, a maximum self-phase modulation (SPM)-limited transmission distance LSPM is determined with eye-opening penalty (EOP) >1 dB .The observations are based on the modeling and numerical simulation of optimum dispersion-managed transmission link. Transmission over distances of the order of several hundreds of kilometers has been shown with and without amplified spontaneous emission (ASE) noise of the in-line erbium-doped fiber amplifiers (EDFAs).  相似文献   

12.
Manjit Singh  Ajay K. Sharma 《Optik》2010,121(7):665-672
We investigate the chirp selection of externally modulated RZ soliton pulse at 10 Gb/s for fiber optical communication systems for the reduction in timing jitter. We have chosen single arm Mach-Zehnder amplitude modulator with sin2 electrical shaped input-output (P-V) characteristic and its chirp range has been varied in the range of −5 to 5. The timing jitter, Q factor and bit error rate (BER) generated for the chirp range has been studied for various fiber lengths and post compensation has been demonstrated to reduce the timing jitter. The number of fixed output amplifiers after every 60 km span is varied from 2 to 10 and corresponding accumulated ASE noise has been studied to manage timing jitter and BER in permissible range, i.e. 5 ps and 10−9, respectively. It is observed that when two fiber spans are taken then the compensating fiber length for the system is less than 20 km for each case of the chirp considered. For 10 fiber spans, the compensating fiber length increases in the range 60-90 km depending upon the value of chirp taken. Finally it is shown that the chirp value of external modulator should be set to either 0 or −1 for externally modulated RZ soliton pulse in 10 Gb/s optical communication system which makes the system more insensitive to the timing jitter and the selection of dispersion compensating fiber length.  相似文献   

13.
In this investigation, we experimentally investigate an extended reach (ER) time-division-multiplexed passive optical network (TDM-PON) using four wavelength-multiplexed channels to achieve 16 Gb/s downlink and 10 Gb/s uplink traffic. Each downlink signal uses the highly spectral efficient 4 Gb/s OFDM-QAM, and each uplink signal is generated by signal remodulating the downlink signal via a reflective semiconductor amplifier (RSOA) at 2.5 Gb/s non-return-to-zero (NRZ). In addition, the performance of the proposed ER TDM-PON has also been analyzed and discussed.  相似文献   

14.
In this paper we demonstrate a technique of signal wavelength conversion via cross-phase modulation (XPM)-induced nonlinear coupling among a 10 GHz return-to-zero (RZ) signal and a continuous wave (CW) carrier co-propagating in dispersion-shifted (DS) highly nonlinear fiber (HNLF). The wavelength conversion bandwidth up to ±20 nm was achieved experimentally and potential extension was verified by numerical simulations. The principle can easily be extended to 40 Gb/s and used as polarization insensitive all-optical wavelength converter.  相似文献   

15.
We investigated 20 channels at 10 Gb/s wavelength division multiplexing (WDM) transmission over 1190 km single mode fiber and dispersion compensating fiber using cascaded inline semiconductor optical amplifier at a span of 70 km for RZ-DPSK (return zero differential phase-shift keying) modulation format by using same channel spacing, i.e. 100 GHz. We show for RZ-OOK (return zero on-off keying) format a transmission distance of up to 1050 km with Q factor more than 15 dB, without any power drops. We developed the SOA model for inline amplifier having minimum cross-talks and ASE (amplified spontaneous emission) noise power with sufficient gain. At optimal bias current of 400 mA, a high constant gain of 36.5 dB is obtained up to a saturation power of 21.36 mW. So reduction of cross-talk and distortion is possible by decreasing the bias current at appropriate amplification factor.The DPSK modulation format has less cross-talk as compared to OOK format for nonlinearities and saturation case. The impact of optical power received and Q factor at different distance for both RZ-OOK and RZ-DPSK modulation format has been illustrated. We have shown the optical spectrum and clear Eye diagram at the transmission distance of 1190 km in RZ-DPSK system and 1050 km in RZ-OOK systems.The bit error rate (BER) for all channels observed is less than 10−10 up to gain saturation for both DPSK and OOK systems. Finally, we investigated that the transmission distance decreases with a decrease in channel spacing of up to 20 GHz.  相似文献   

16.
In the gigabit-capable passive optical network (GPON) optical communication system, the selection of fiber and system performance-analysis is the key links for the realization of system function. Especially the characteristic budget and parameter setting of downlink receiver are topped the list. The analysis of receiver power penalty can reduce the influence on receiver sensitivity and bit error rate (BER) that caused by waveguide dispersion and pulse widening. This article will simulate the performance of GPON downlink receiver, then analyze typical characteristics such as Four Wave Mixing (FWM), Erbium-Doped Fiber Amplifier (EDFA), system eye pattern and Q factor and so on, so as to validate the feasibility of the optical downlink.  相似文献   

17.
Until recently, the wavelength-division-multiplexed (WDM) transmission system has reached record capacities and distances due to innovations such as FEC (Forward Error Correction), distributed Raman amplification, new transmission fiber and advanced optical format. Optical-communication systems exclusively employed conventional On-Off Keying signals in either Non-Return-To-Zero (NRZ) or Return-To-Zero (RZ) format. Recently a number of advanced modulation formats have attracted attention. Some of these formats carry information through On-Off-Keying but also modulate the optical phase in order to enhance the robustness of signal to chromatic dispersion, optical filtering and non-linearities. Through extensive sets of simulation results, we showed that it is possible to replace a channel with higher bit-rate on existing DPSK or OOK at 10Gbit/s transmission link. Duobinary formats are ideal candidates to do it and are known for their low spectral range and high tolerance to residual chromatic dispersion. These particularities make them very attractive for both high bit rates and high distance-transmissions. Today, Phase Shaped Binary Transmission (PSBT) is considered as being the promising format for the deployment of 40Gbit/s technology on existing links at 10Gbit/s WDM long haul transmissions.  相似文献   

18.
Manoj Kumar  T.S. Kamal 《Optik》2009,120(7):330-3547
This paper presents the comparative investigation and suitability of various data formats for optical soliton transmission links at 10 Gb/s for different chirps (−0.7 to 0.7). Here the investigations focused on data formats: NRZ, RZ soliton, RZ raised cosine and RZ super Gaussian. The comparative results and suitability of data formats is based on various performance measures such as Q-factor, eye opening, BER and jitter. It has been indicated that RZ super Gaussian yields the highest value of Q (34.08 dB), good eye opening and lowest BER.  相似文献   

19.
We have investigated the effects of crosstalk in fiber Raman amplifiers (FRAs) by propagating signals through the Raman fiber. We have observed that quality factor reduces for lesser channel spacing. We have able to propagate the signals in two channels with spacing of 20 GHz and quality factor above 25 dB was obtained. The effect of signal input power and injected pump power on crosstalk and signal interference ratio (SIR) has analyzed. It is observed that the signal gain and the injected pump power should be limited to the value well below the threshold of Raman amplification to ensure small crosstalk and high SIR. The effect of Raman fiber length on crosstalk is also studied and it is observed that for high values of Raman fiber length, SIR reduces considerably.  相似文献   

20.
This paper aims to evaluate a comprehensive numerical model based on solving rate equations of a thulium-doped silica-based fiber amplifier. The pump power and thulium-doped fiber (TDF) length for single-pass thulium-doped fiber amplifiers (TDFA) are theoretically optimized to achieve the optimum gain and noise figure (NF) at the center of S-band region. The 1064 nm pump is used to provide both ground-state and excited state absorptions for amplification in the S-band region. The theoretical result is in agreement with the published experimental result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号