首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoluminescence, photoconductivity and absorption in GaSe0.9Te0.1 alloy crystals have been investigated as a function of temperature and external electric field. It has been observed that the exciton peaks shift to lower energy in GaSe0.9Te0.1 alloy crystals compared to GaSe crystals. The long wavelength tails of interband photoluminescence, photoconductivity and absorption spectra are determined by the free exciton states and show an Urbach-Martienssen-type dependence to the photon energy. The maxima of the extrinsic photoluminescence and photoconductivity spectra were found to be determined by the acceptor centers with an energy of EA=EV+0.19 eV formed by the polytypism and defects complexes that include Se and Te anions.  相似文献   

2.
Ground and excited states of three exciton series are observed in the region of fundamental absorption edge of AgAsS2 crystals. The contours of exciton reflection spectra are calculated and the main parameters of excitons and energy bands are determined in the center of Brillouin zone. The optical reflection spectra are investigated at 30 K in Ec and Ec polarizations in AgAsS2 crystals in the region of 2-6 eV. The optical functions are calculated from the reflection spectra and a scheme of electronic transitions responsible for peculiarities of reflection spectra deep into the absorption band is proposed.  相似文献   

3.
Strong resonant enhancements of inelastic light scattering from the long wavelength inter-Landau level magnetoplasmon and the intra-Landau level spin wave excitations are seen for the fractional quantum Hall state at ν=1/3. The energies of the sharp peaks (FWHM 0.2 meV) in the profiles of resonant enhancement of inelastic light scattering intensities coincide with the energies of photoluminescence bands assigned to negatively charged exciton recombination. To interpret the observed enhancement profiles, we propose three-step light scattering mechanisms in which the intermediate resonant transitions are to states with charged excitonic excitations.  相似文献   

4.
GaSe single crystals were N-implanted along c-axis with ion beams of 1014 and 1016 ions/cm2 doses having energy values of 60 and 100 keV. The photoluminescence (PL) spectra of undoped and N-implanted GaSe crystals were measured at different temperatures. The PL intensity was observed to decrease with increasing implantation dose while the FWHM of the exciton peaks increased. In heavily doped crystals, due to the interaction with the radiation induced disorders, the wave vector selection rules are satisfied and an indirect exciton PL band is observed 36 meV below the direct exciton states.  相似文献   

5.
Induced absorption and gain in CdS at 1.8 K has been investigated under excitation densities up to 10 MW cm?2. The absorption and gain below the free exciton energy is governed by exciton interactions and optical conversion of excitons into excitonic molecules. At the highest density, induced transparency due to excitonic molecule recombinations is observed. EM=5.1002 eV is determined.  相似文献   

6.
The energy relaxation kinetics and the structure of the J-aggregates of water-soluble porphyrin 5,10,15,20-tetrasulphonatophenyl porphine (TPPS4) were investigated in aqueous medium by means of time-resolved fluorescence spectroscopy and confocal laser-scanning fluorescence microscopy. The excitation of the J-aggregates, at excitation intensities higher than ∼1015 photons/cm2 per pulse, results in a remarkable decrease of the fluorescence quantum yield and in the appearance of an additional, non-exponential energy relaxation channel with a decay constant that depends on the excitation intensity. This relaxation mechanism was attributed to the exciton single-singlet annihilation. The exciton lifetime in the absence of the annihilation was calculated to be ∼150 ps. Using exciton annihilation theory, the exciton migration within the J-aggregates could be characterized by determining the exciton diffusion constant (1.8±0.9)  10−3 cm2/s and the hopping time (1.2±0.6) ps. Using the experimental data, the size of the J-aggregate could be evaluated and was seen to yield at least 20 TPPS4 molecules per aggregate. It was shown by means of confocal fluorescence laser scanning microscopy that TPPS4 does self-associate in polyvinyl alcohol (PVA) at acidic pH forming molecular macro-assemblies on a scale of ∼1 μm in PVA matrices.  相似文献   

7.
The nonmodulated and wavelength-modulated reflection spectra of CuGaS2 crystals for the polarization EIIc of 10 K are studied. The states n = 1, 2 and 3 of the excitons Γ4 (A-excitons) and n = 1, n = 2 of B- and C-excitons are found. The nonmodulated absorption spectra for the polarization Ec at 10 K have been studied. The states n = 1, 2 and 3 of Γ5 excitons are found. The main parameters of the A (Γ4, Γ5) and B, C exciton series at the energies of the longitudinal and transverse excitons Γ4 for the states n = 1 and n = 2, the effective masses of electrons and holes are determined. The photoluminescence peaks were observed at n = 3 and n = 4 of the excitons Γ5 in the luminescence spectra excited by the line 4880 Å of Ar+ laser. In the luminescence spectra the interference is found.  相似文献   

8.
We study magnetotransport properties of graphite and rhombohedral bismuth samples and found that in both materials applied magnetic field induces the metal-insulator- (MIT) and reentrant insulator-metal-type (IMT) transformations. The corresponding transition boundaries plotted on the magnetic field-temperature (B − T) plane nearly coincide for these semimetals and can be best described by power laws T ∼ (B − Bc)κ, where Bc is a critical field at T = 0 and κ = 0.45 ± 0.05. We show that insulator-metal-insulator (I-M-I) transformations take place in the Landau level quantization regime and illustrate how the IMT in quasi-3D graphite transforms into a cascade of I-M-I transitions, related to the quantum Hall effect in quasi-2D graphite samples. We discuss the possible coupling of superconducting and excitonic correlations with the observed phenomena, as well as signatures of quantum phase transitions associated with the M-I and I-M transformations.  相似文献   

9.
Defects of the type of VK and Pb+ centres were created in CsI:Pb under the 4.03 eV XeCl laser line irradiation at 10 K. After irradiation, the self-trapped and localized exciton emission excited by the same XeCl laser line was observed as a result of the recombination of electrons, optically released from Pb+, with the VK centres. A strongly superlinear dependence of the emission intensity on the excitation intensity was found for the 3.65 eV emission of the self-trapped exciton. A much weaker superlinearity was observed for the visible localized exciton emission. Optical amplification of the exciton emission was considered as the most probable reason of the observed phenomenon. At 10 K, optical gain G=3.74 was calculated for the self-trapped exciton emission.  相似文献   

10.
Ytterbium tri-fluoromethanesulfonate (YbTFMS) single crystals are prepared from the slow evaporation of the aqueous solution of YbTFMS and the principal magnetic susceptibility perpendicular to the c-axis of the hexagonal crystal (χ) is measured from 300 K down to 13 K. Principal magnetic anisotropy Δχ(=χχ) is measured from 300 K down to 80 K which provides principal magnetic susceptibility parallel to the c-axis (χ) down to 80 K. Very good theoretical simulation of the observed magnetic properties of YbTFMS has been obtained using one electron crystal field (CF) analysis having C3h site symmetry. No signature of ordering effect in the observed magnetic data is noticed down to the lowest temperature (13 K) attained, indicating the inter-ionic interaction to be of predominantly dipolar type. The calculated g-values are found to be g=2.67 and g=2.51, respectively. CF analysis provides the electronic specific heat which gives two Schottky anomalies in its thermal variation down to ∼13 K. The temperature dependences of quadrupole splitting and hyperfine heat capacity are studied from the necessary information obtained from the CF analysis.  相似文献   

11.
Gallium sulphide (GaS) is a layer structure semiconductor with relatively wide energy gap (Eg (295 K) = 2.5 eV and Eg (80 K) = 2.62 eV). It has potential applications in some areas of optoelectronics. This paper presents the investigations of the influence of light intensity on surface recombination velocity of charge carriers in GaS single crystals. To attain this purpose spectral dependences (between 420 and 550 nm) of absorption coefficients, reflectivity coefficients and photoconductivity were measured in vacuum. The investigations were performed for various light intensities in several temperatures from 80 to 333 K. The least square method was applied to fit the theoretical dependences of photoconductivity on wavelength and intensity of illumination at these temperatures. From the fittings the temperature and light intensity dependences of surface recombination velocity and bulk lifetime of charge carriers were obtained.  相似文献   

12.
The intrinsic exciton spectrum of ZnO at 4.2°K has been investigated by two quantum absorption of light polarized parallel and perpendicular to hexagonal c-axis (light direction normal to c-axis). Three lines are observed with intensity and spectral position depending on polarization of the two interacting beams in respect to the c-axis. They are interpreted as n=2 states of the exciton series A, B and C with 2P0 and 2P+1 envelope.  相似文献   

13.
Metal tungstates (MeWO4, Me = Ba, Sr and Ca) were successfully prepared using the corresponding Me(NO3)2·2H2O and Na2WO4·2H2O in ethylene glycol by the 5 h sonochemical process. The tungstate phases with scheelite structure were detected with X-ray diffraction (XRD) and selected area electron diffraction (SAED). Their calculated lattice parameters are in accord with those of the JCPDS cards. Transmission electron microscopy (TEM) revealed the presence of nanoparticles composing the products. Their average sizes are 42.0 ± 10.4, 18.5 ± 5.1 and 13.1 ± 3.3 nm for Me = Ba, Sr and Ca, respectively. Interplanar spaces of the crystals were also characterized with high-resolution TEM (HRTEM). Their crystallographic planes are aligned in systematic array. Six different vibration wavenumbers were detected using Raman spectrometer and are specified as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and free rotation. Fourier transform infrared (FTIR) spectra provided the evidence of scheelite structure with W-O anti-symmetric stretching vibration of [WO4]2− tetrahedrons at 786-883 cm−1. Photoluminescence emission of the products was detected over the range of 384-416 nm.  相似文献   

14.
We have carried out investigations of the exciton reflection spectra of Cs3Bi2I9 layered crystals as a function of temperature. For the first time for the layered substances we have found nontraditional temperature shift of the energy gap Eg(T) described by the Varshni formula. We have registered a transition region in the temperature broadening of the half-width, H(T), of the exciton band with increasing of temperature in the interval between 150 and 220 K. It is shown that this region may be identified as the heterophase structure region where ferroelastic and paraelastic phases coexist. We have also found a surge in H(T) at the ferroelastic phase transition point   相似文献   

15.
The M-band emission in ZnO at 1.7 K is investigated by tuning the excitation light through the A-B exciton region. Externally stimulated two-photon emission from excitonic molecules is observed when the pump photon energy is resonant with the upper B-polariton. The experiments suggest two excitonic molecule levels separated by 4.6 meV and with a ground state energy EM = 6.7394 eV.  相似文献   

16.
Excitonic recombination and photoconductivity near the energy gap of vapour grown InP epitaxial layers are investigated. Besides the free exciton several bound exciton complexes are observed and studied as a function of temperature. A new value of the band gap is derived (Eg = 1.424 ± 0.001 meV).  相似文献   

17.
We report the results of a comprehensive reinvestigation of the rotational spectrum of diethyl ether based on broadband millimetre-wave spectra recently recorded at The Ohio State University and in Warsaw, covering the frequency region 108-366 GHz. The data set for the ground vibrational state of trans-trans diethyl ether has been extended to over 2000 lines and improved spectroscopic constants have been determined. Rotational spectra in the first excited vibrational states of the three lowest vibrational modes of trans-trans-diethyl ether, ν20, ν39, and ν12 have been assigned. The v20 = 1 and v39 = 1 states are near 100 cm−1 in vibrational term value and are coupled by a strong c-axis Coriolis interaction, which gives rise to many spectacular manifestations in the rotational spectrum. All of these effects have been successfully fitted for a dataset comprising over 3000 transitions, leading to precise determination of the energy difference between these states, (ΔE/hc)=10.400222(5) cm−1. A newly developed software package for assignment and analysis of broadband spectra is described and made available.  相似文献   

18.
We have studied the properties of ZnO thin films grown by laser ablation of ZnO targets on (0 0 0 1) sapphire (Al2O3), under substrate temperatures around 400 °C. The films were characterized by different methods including X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM). XPS analysis revealed that the films are oxygen deficient, and XRD analysis with θ-2θ scans and rocking curves indicate that the ZnO thin films are highly c-axis oriented. All the films are ultraviolet (UV) sensitive. Sensitivity is maximum for the films deposited at lower temperature. The films deposited at higher temperatures show crystallite sizes of typically 500 nm, a high dark current and minimum photoresponse. In all films we observe persistent photoconductivity decay. More densely packed crystallites and a faster decay in photocurrent is observed for films deposited at lower temperature.  相似文献   

19.
AWO4 (A = Ca, Sr) was prepared from metal salts [Ca(NO3)2·4H2O or Sr(NO3)2], Na2WO4·2H2O and different moles of cetyltrimethylammonium bromide (CTAB) in water by cyclic microwave irradiation. The structure of AWO4 was characterized by X-ray diffraction (XRD) and selected area electron diffraction (SAED). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the presence of nanoparticles in clusters with different morphologies; spheres, peaches with notches, dumb-bells and bundles, influenced by CTAB. Six Raman vibrational peaks of scheelite structure were detected at 908, 835, 793, 399, 332 and 210 cm−1 for CaWO4 and 917, 833, 795, 372, 336 and 192 cm−1 for SrWO4, which are assigned as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and νf.r.(Ag), respectively. Fourier transform infrared (FTIR) spectra provided the evidence of W-O stretching vibration in [WO4]2− tetrahedrons at 793 cm−1 for CaWO4 and 807 cm−1 for SrWO4. The peaks of photoluminescence (PL) spectra were at 428-434 nm for CaWO4, and 447-451 nm for SrWO4.  相似文献   

20.
The half-width of exciton absorption band (n=1) of Cs3Bi2I9 layered ferroelastic crystals was studied carefully as function of temperature in the range from 5 to 300 K. For the first time, we have found a new physical effect: change of exciton-phonon interaction (from weak to strong) in the same sample as temperature increases. It was established that the temperature value T*=150 K may be considered as characteristic one, below which a crystal loses the nature of layered substance. The effect is explained using a model that takes into account the reconstruction of the crystal lattice from non-layered to layered one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号