首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate the generation of 515 nm green laser with diode-pumped Yb:YAG thin disk by intracavity frequency doubling of type-I phase-matched LiB3O5(LBO) in a V-type cavity at room temperature. A continuous-wave (CW) output power of 4.44 W at 515 nm was obtained. Optical-optical efficiency of 515 nm green laser is 14.6%. The fluctuation of green laser was 1.6% at the maximum output power in 0.5 h. Thermal lensing effects in Yb:YAG thin disk are investigated too.  相似文献   

2.
A thin-disc Nd:GdVO4 laser in multi-pass pumping scheme was developed. Continuous-wave output power of 13.9 W at 1.06 μm for an absorbed power at 808 nm of 22 W was demonstrated from a 250-μm thick, 0.5-at.% Nd:GdVO4 in a 4-pass pumping; the slope efficiency in absorbed power was 0.65, or 0.47 in input power. Output performances were also investigated under diode laser pumping at 879 nm, directly into the emitting 4F3/2 level: maximum power of 3.6 W was obtained at 6.2 W of absorbed power with 0.69 slope efficiency. Compared with pumping at 808 nm, into the highly absorbing 4F5/2 level, improvements of laser parameter in absorbed power (increase of slope efficiency, decrease of threshold) were obtained, showing the advantages of the pumping into the emitting level. However, the laser performances expressed vs. the incident power were modest owing to the low absorption efficiency at 879 nm. Thus, increased number of passes of the medium would be necessary in order to match the performances in input power obtained under 808-nm pumping.  相似文献   

3.
A high-power continuous-wave (CW) diode-end-pumped intracavity-frequency-doubled red laser is reported here. The laser consists of a 0.3 at.% Nd:GdVO4 crystal as laser gain medium, a type II non-critical phase-matched (NCPM) LBO crystal or a type I critical phase-matched (CPM) LBO crystal as frequency-doubler, and a three-mirror-folded cavity. At incident pump power of about 41 W, maximum output powers of 3.8 W and 3 W at 671 nm are obtained with corresponding optical-to-optical conversion efficiency of 9.3% and 7.5%, respectively. During half an hour, the instability of the red beam is less than 3% at output of 3 W.  相似文献   

4.
A laser diode pumped actively Q-switched Nd:GdVO4 self-Raman laser operating at 1173 nm is presented. The maximum output power was 2.26 W at an incident pump power of 18 W, with the corresponding optical conversion efficiency of 12.6%. Two different resonator configurations were investigated in order to achieve high output power and efficiency.  相似文献   

5.
We reported an actively Q-switched, intracavity Nd3+:YVO4 self-Raman laser at 1176 nm with low threshold and high efficiency. From the extracavity frequency doubling by use of LBO nonlinear crystal, over 3.5 mW, 588 nm yellow laser is achieved. The maximum Raman laser output at is 182 mW with 1.8 W incident pump power. The threshold is only 370 mW at a pulse repetition frequency of 5 kHz. The optical conversion efficiency from incident to the Raman laser is 10%, and 1.9% from Raman laser to the yellow.  相似文献   

6.
An active Q-switched diode-end-pumped Nd:YAG laser is reported with 2.9 W output power on the 4F3/2 → 4I9/2 transitions at a pump power of 24 W. With intracavity frequency doubling using a 20-mm-long LBO, a maximum blue output power of 2.25 W is achieved at a repetition rate of 23 kHz. The conversion efficiency from the corresponding Q-switched fundamental output to blue output is 96%. The peak power of the Q-switched blue pulse is up to 610 W with 160 ns pulse width. The fluctuation of the blue output power is less than 4.0% at the maximum output power.  相似文献   

7.
We have demonstrated an efficient diode-pumped passively Q-switched Nd:GdVO4 laser working at 1342 nm by using an uncoated V3+:YAG crystal as the saturable absorber, in which both a-cut and c-cut Nd:GdVO4 crystals are employed. At the maximum absorbed pump power of 9.45 W, the maximum average output power can reach 519 mW and 441 mW corresponding to the output coupler with different transmission of 3% and 10% by using an a-cut Nd:GdVO4 crystal at 1342 nm, while the shortest pulse duration could be as low as 21.7 ns and 22.3 ns with the repetition rate of 48.41 kHz and 53.25 kHz by using a c-cut Nd:GdVO4 crystal, corresponding to the output coupler with different transmission of 3% and 10% at 1342 nm, and the single Q-switched pulse energy are 6.67 uJ and 7.06 uJ, the pulse peak power are 307 W and 316 W, respectively. The experimental results show that c-cut Nd:GdVO4 laser can generate shorter pulse with higher peak power in comparison with a-cut one.  相似文献   

8.
Thermal effect control is critical to scale the output power of diode end-pumping solid lasers to several watts up and beyond. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lens for the end-pumping laser crystal. The temperature distribution and thermal lens in Nd:YVO4/YVO4 composite crystal was numerically analyzed and compared with that of Nd:YVO4 crystal in this paper. The end-pumping Nd:YVO4/YVO4 composite crystal laser was set up and tested with z cavity. The maximum output power of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the pumping power of 16.5 W. The highest optical-optical conversion efficiencies were up to 60% at 1064 nm and 40% at 532 nm, respectively.  相似文献   

9.
The continuous-wave (cw) and passive Q-switching operation of a diode-end-pumped gadolinium gallium garnet doped with neodymium (Nd:GGG) laser at 1062 nm was realized. A maximum cw output power of 6.9 W was obtained. The corresponding optical conversion efficiency was 50.9%, and the slope efficiency was determined to be 51.4%. By using Cr4+:YAG crystals as saturable absorbers, Q-switching pulse with average output power of 1.28 W, pulse width of 4 ns and repetition rate of 6.2 kHz were obtained. The single-pulse energy and peak power were estimated to be 206 μJ and 51.6 kW, respectively. The conversion efficiency of the output power from cw to Q-switching operation was as high as 84.7%.  相似文献   

10.
We reported the Ho:YAP laser pumped by the Tm:YAP laser. The Ho:YAP laser maximum output power was 4.91 W when the incident power was 10.1 W with the threshold of 2.63 W. The slope efficiency was 63.7%, corresponding to an optical-to-optical efficiency of 48.6%. The Ho:YAP output wavelength was centered at 2118.2 nm with bandwidth of about 1 nm. We estimate the beam quality to be M2 = 1.29.  相似文献   

11.
A simultaneous self-Q-switched and mode-locked diode-pumped 946 nm laser by using a Cr,Nd:YAG crystal as gain medium as well as saturable absorber is demonstrated for the first time as we know. The maximum average output power of 751 mW with a slope efficiency of 18.38% is obtained at an intra-cavity average peak power intensity of 4.83 × 106 W/cm2. Under this circumstance, the repetition rate of Q-switched envelopes is 9.63 kHz and the pulse width is about 460 ns. Almost 100% mode-locked modulation depth is obtained at all time in the experiment process whether the incident pump power is low or high. The repetition rate of mode-locked pulses within a Q-switched envelope is 135.13 MHz and the mode-locked pulse width is within 600 ps. The laser produces high-quality pulses in TEM00-mode in the simultaneous self-Q-switched and mode-locked experiment.  相似文献   

12.
Simultaneous self-Q-switched and mode-locked have been demonstrated in a diode-pumped Nd,Cr:YAG laser. For the first time as we know, almost 100% modulation depth has been achieved at an intracavity intensity of 5.6 × 105 W/cm2. The maximum average output power of 6.52 W corresponding to a slope efficiency of 30% is obtained at 1064 nm. The laser produces high-quality pulses in a TEM00-mode at the pump power of 16.5 W. The pulse duration of the mode-locked pulses is about 600 ps with 136 MHz repetition rate.  相似文献   

13.
A dual-wavelength laser at 1064 nm and 1319 nm is obtained by a single Nd:YAG crystal rod. On the basis of 1064 nm and 1319 nm dual-wavelength laser installation, the second harmonic waves at 532 nm and 660 nm can be achieved by using non-linear frequency conversion technology. When 1064 nm and 1319 nm lasers oscillate simultaneously, the maximum output power is 30.5 W and 8.78 W, respectively. When the 1319 nm laser is restrained, we obtain a 35.6 W maximum output power at 1064 nm and by contrary 11.2 W at 1319 nm. The maximum output powers of 532 nm and 660 nm lasers are 5.34 W and 1.353 W when oscillating simultaneously. With one of them restrained, the maximum output power is 6.72 W at 532 nm and 1.90 W at 660 nm. The optimum repetition rate of the acousto-optic Q-switch is 10.5 KHz and 20.5 KHz for 532 nm and 660 nm lasers, respectively. The optical-to-optical conversion efficiency from the fundamental waves to the harmonic waves is 17.5% and 15.4%. The instability is less than 2%.  相似文献   

14.
We report, for the first time, an efficient intra-cavity second-harmonic generation (SHG) at 1084 nm in a nonlinear optical crystal, BiB3O6(BIBO) at the direction of (θ?) = (170.1°, 90°), performed with a LD end-pumped cw Nd:YVO4 laser. With 590 mW diode pump power, a continuous-wave (cw) SHG output power of 19 mW at 542 nm yellow-green color has been obtained using a 1.5 mm-thick BIBO crystal. The optical conversion efficiency was 3.22%. It was found that the output wavelength could be 532 nm, 537 nm or 542 nm according to regulating the angle of BIBO.  相似文献   

15.
We report a stable high power and high beam quality diode-side-pumped CW green laser from intracavity frequency doubled Nd:YAG laser with LBO crystal. By using a advanced resonator, a large fundamental mode size in the laser crystal and a tight focus in the nonlinear crystal could be obtained simultaneously, which are favorable for high power and high beam quality CW green laser generation. The green laser delivered a maximum 532 nm output power of 40 W. The corresponding optical-to-optical conversion efficiency and electrical-to-optical conversion efficiency were 8.6% and 5.0%, respectively. Under 532 nm output power of 34 W, the beam quality factor was measured to be 1.6.  相似文献   

16.
A diode-pumped high-power continuous-wave (cw) dual-wavelength Yb:CaNb2O6 lasers at 1003 nm and 1038 nm is reported. By using an end-pumped structure and employing a 978 nm diode-laser as the pump source. As a result, the total output power of 803 mW dual-wavelength lasers at 1003 nm and 1038 nm is obtained at an incident pump power of 17.8 W. Furthermore, intracavity sum-frequency mixing at 1003 and 1038 nm was then realized in a LBO crystal to reach the green range. We obtained a total cw output power of 94 mW at 510 nm.  相似文献   

17.
We report on the generation of high average power, high repetition rate, and picosecond (ps) deep-ultraviolet (DUV) 177.3 nm laser. The DUV laser is produced by second-harmonic generation of a frequency-tripled mode-locked Nd: YVO4 laser (<15 ps, 80 MHz) with KBBF nonlinear crystal. The influence of different fundamental beam diameters on DUV output power and KBBF-SHG conversion efficiency are investigated. Under the 355 nm pump power of 7.5 W with beam diameter of 145 μm, 41 mW DUV output at 177.3 nm is obtained. To our knowledge, this is the highest average power for the 177.3 nm laser. Our results provide a power scaling by three times with respect to previous best works.  相似文献   

18.
A high-power continuous-wave (CW) all-solid-state Nd:GdVO4 laser operating at 1.34 μm is reported here. The laser consists of a low doped level Nd:GdVO4 crystal double-end-pumped by two high-power fiber-coupled diode lasers and a simple plane-parallel cavity. At an incident pump power of 88.8 W, a maximum CW output of 26.3 W at 1.34 μm is obtained with a slope efficiency of 33.7%. To the best of our knowledge, this is the highest output at 1.34 μm ever generated by diode-end-pumped all-solid-state lasers.  相似文献   

19.
A laser diode end-pumped 10 at.% doped Yb:YAG microchip crystal intracavity frequency doubled all solid-stated green laser is reported in this paper. Using one plano-concave resonator, with the pump power of 1.2 W, 44.2 mW TEM00 continuous wave (CW) laser at 525 nm was obtained, the optical conversion efficiency was about 3.7%. When a Cr:YAG crystal with initial transmission of 95.5% inserted in the resonator, the maximum output power of 6.4 mW, pulse duration width of 49.1 ns, pulse repetition rate of 2.45 kHz, and peak power of 53.1 W at 515 nm were achieved when the pump power was 1.2 W. The wavelength changed from 525 nm to 515 nm and the threshold was only 725 mW.  相似文献   

20.
We report an intracavity frequency-doubled Q-switched self-Raman yellow laser at 587 nm. A composite Nd:YVO4 crystal was utilized as self-Raman gain medium. The maximum average output power of yellow light obtained was 1.5 W at the incident pump power of 30 W and at a repetition rate of 50 kHz, corresponding to the optical conversion efficiency of 5%. The shortest pulse width, the maximum pulse energy and the highest peak power were measured to be 5.8 ns, 46.7 μJ and 5.9 kW, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号