首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Sr3Y(PO4)3:0.05Sm3+, Sr3Y(PO4)3:0.005Tb3+, and Sr3Y(PO4)3:0.005Tb3+, 0.05Sm3+ phosphors were synthesized using a conventional solid-state reaction technique at high temperature and their photoluminescence properties under ultraviolet (UV) excitation were studied. We observed the UV sensitization of Sm3+ emission (565, 600, and 648 nm) by Tb3+ in Sr3Y(PO4)3:0.005Tb3+, 0.05Sm3+, that leads to a white light emission with the CIE coordinate (0.367, 0.312) of Sr3Y(PO4)3:0.005Tb3+, 0.05Sm3+ phosphor under UV excitation. The emission is a result of partial energy transfer from Tb3+ to Sm3+, which is discussed in detail in terms of the corresponding excitation and emission spectra.  相似文献   

2.
Herein, a unique coordination system that exhibits multiple chiral inversions and molecular dimerization in response to a subtle pH change is reported. Treatment of (Δ)2‐H3[Au3Co2(L ‐cys)6] (H3[ 1 a ]) with [Co3(aet)6](NO3)3 (aet=2‐aminoethanethiolate) in water at pH 7 gave a 1:1 complex salt of [Co3(aet)6]3+ and [ 1 a ]3?, retaining the AuI3CoIII2 structure and chiral configurations of [ 1 a ]3?. Similar treatment at pH 9 led to not only the inversion of all of the chiral CoIII and S centers but also the dimerization of [ 1 a ]3?, giving a 2:1 complex salt of [Co3(aet)6]3+ and (Λ)4(R)12‐[Au6Co4(L ‐cys)12]6? ([ 2 ]6?). When dissociated from [Co3(aet)6]3+ in solution, [ 2 ]6? was converted to (Λ)2(R)6‐[Au3Co2(L ‐cys)6]3? ([ 1 b ]3?) with retention of the chiral configurations.  相似文献   

3.
《Solid State Sciences》2012,14(2):236-240
LaGaO3:Tm3+, Yb3+ powder was synthesized by a high-energy ball milling (HEB) and a conventional solid state reaction (SSR). The X-ray diffraction patterns confirmed the LaGaO3:Tm3+, Yb3+ powder phosphors to have an orthorhombic structure. The spectrum consisted of 1G4 → 3H6, weak 1G4 → 3F4, and intense 3H4 → 3H6 transition bands within the f12 configuration of Tm3+, together with the 2F5/2 → 2F7/2 transition of Yb3+. Up-converted emission of the LaGaO3:Tm3+, Yb3+ powders were observed under laser diode excitation of 975 nm. The PL intensity of the HEB-LaGaO3:Tm3+, Yb3+ powders sintered at 1300 °C were higher than those of all LaGaO3:Tm3+, Yb3+ powder samples examined. The energy transition probability of HEB-LaGaO3:Tm3+, Yb3+ powders are higher than that of the SSR-LaGaO3:Tm3+, Yb3+ powders. Compared to the solid state reaction method, synthesis by high-energy ball milling is simple and provides improved crystallinity of the host.  相似文献   

4.
The paper presents a radiokinetic study on the appearance and growth of*Fe2S3,*Fe(OH)3,*Fe2(C2O4)3,*Fe(IO3)3 crystals in a colloidal medium of agar and gelatine. The values of the diffusion constants through gels of55+59Fe3+ radioactive cations and of the rate of global growth process of these crystals in agar or gelatine were calculated using the experimental data. A new method for the determination of the starting time for the complex nucleation process was proposed. The formation rate of crystals under study decreases in the order:*Fe(OH)3>*Fe(IO3)3>*Fe2S3>*Fe2(C2O4)3, in agar medium and*Fe(OH)3>*Fe(IO3)3>*FeC2O4)3>*FeS3, in gelatine medium.  相似文献   

5.
A μ3‐η222‐silane complex, [(Cp*Ru)33‐η222‐H3SitBu)(μ‐H)3] ( 2 a ; Cp*=η5‐C5Me5), was synthesized from the reaction of [{Cp*Ru(μ‐H)}33‐H)2] ( 1 ) with tBuSiH3. Complex 2 a is the first example of a silane ligand adopting a μ3‐η222 coordination mode. This unprecedented coordination mode was established by NMR and IR spectroscopy as well as X‐ray diffraction analysis and supported by a density functional study. Variable‐temperature NMR analysis implied that 2 a equilibrates with a tautomeric μ3‐silyl complex ( 3 a ). Although 3 a was not isolated, the corresponding μ3‐silyl complex, [(Cp*Ru)33‐η22‐H2SiPh)(H)(μ‐H)3] ( 3 b ), was obtained from the reaction of 1 with PhSiH3. Treatment of 2 a with PhSiH3 resulted in a silane exchange reaction, leading to the formation of 3 b accompanied by the elimination of tBuSiH3. This result indicates that the μ3‐silane complex can be regarded as an “arrested” intermediate for the oxidative addition/reductive elimination of a primary silane to a trinuclear site.  相似文献   

6.
The influence of the potentially chelating imino group of imine‐functionalized Ir and Rh imidazole complexes on the formation of functionalized protic N‐heterocyclic carbene (pNHC) complexes by tautomerization/metallotropism sequences was investigated. Chloride abstraction in [Ir(cod)Cl{C3H3N2(DippN=CMe)‐κN3}] ( 1 a ) (cod=1,5‐cyclooctadiene, Dipp=2,6‐diisopropylphenyl) with TlPF6 gave [Ir(cod){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 3 a +[PF6]?). Plausible mechanisms for the tautomerization of complex 1 a to 3 a +[PF6]? involving C2?H bond activation either in 1 a or in [Ir(cod){C3H3N2(DippN=CMe)‐κN3}2]+[PF6]? ( 6 a +[PF6]?) were postulated. Addition of PR3 to complex 3 a +[PF6]? afforded the eighteen‐valence‐electron complexes [Ir(cod)(PR3){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 7 a +[PF6]? (R=Ph) and 7 b +[PF6]? (R=Me)). In contrast to Ir, chloride abstraction from [Rh(cod)Cl{C3H3N2(DippN=CMe)‐κN3}] ( 1 b ) at room temperature afforded [Rh(cod){C3H3N2(DippN=CMe)‐κN3}2]+[PF6]? ( 6 b +[PF6]?) and [Rh(cod){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 3 b +[PF6]?) (minor); the reaction yielded exclusively the latter product in toluene at 110 °C. Double metallation of the azole ring (at both the C2 and the N3 atom) was also achieved: [Ir2(cod)2Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 10 ) and the heterodinuclear complex [IrRh(cod)2Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 12 ) were fully characterized. The structures of complexes 1 b , 3 b +[PF6]?, 6 a +[PF6]?, 7 a +[PF6]?, [Ir(cod){C3HN2(DippN=CMe)(DippN=CH)(Me)‐κ2(N3,Nimine)}]+[PF6]? ( 9 +[PF6]?), 10? Et2O ? toluene, [Ir2(CO)4Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 11 ), and 12? 2 THF were determined by X‐ray diffraction.  相似文献   

7.
A series of five complexes that incorporate the guanidinium ion and various deprotonated forms of Kemp’s triacid (H3KTA) have been synthesized and characterized by single‐crystal X‐ray analysis. The complex [C(NH2)3+] ? [H2KTA?] ( 1 ) exhibits a sinusoidal layer structure with a centrosymmetric pseudo‐rosette motif composed of two ion pairs. The fully deprotonated Kemp’s triacid moiety in 3 [C(NH2)3+] ? [KTA3?] ( 2 ) forms a record number of eighteen acceptor hydrogen bonds, thus leading to a closely knit three‐dimensional network. The KTA3? anion adopts an uncommon twist conformation in [(CH3)4N+] ? 2 [C(NH2)3+] ? [KTA3?] ? 2 H2O ( 3 ). The crystal structure of [(nC3H7)4N+] ? 2 [C(NH2)3+] ? [KTA3?] ( 4 ) features a tetrahedral aggregate of four guanidinium ions stabilized by an outer shell that comprises six equatorial carboxylate groups that belong to separate [KTA3?] anions. In 3 [(C2H5)4N+] ? 20 [C(NH2)3+] ? 11 [HKTA2?] ? [H2KTA?] ? 17 H2O ( 5 ), an even larger centrosymmetric inner core composed of eight guanidinium ions and six bridging water molecules is enclosed by a crust composed of eighteen axial carboxyl/carboxylate groups from six HKTA2? anions.  相似文献   

8.
The reactivity of white phosphorus and yellow arsenic towards two different nickel nacnac complexes is investigated. The nickel complexes [(L1Ni)2tol] ( 1 , L1=[{N(C6H3iPr2-2,6)C(Me)}2CH]) and [K2][(L1Ni)2(μ,η1 : 1-N2)] ( 6 ) were reacted with P4, As4 and the interpnictogen compound AsP3, respectively, yielding the homobimetallic complexes [(L1Ni)2(μ-η2121-E4)] (E=P ( 2 a ), As ( 2 b ), AsP3 ( 2 c )), [(L1Ni)2(μ,η3 : 3-E3)] (E=P ( 3 a ), As ( 3 b )) and [K@18-c-6(thf)2][L1Ni(η1 : 1-E4)] (E=P ( 7 a ), As ( 7 b )), respectively. Heating of 2 a , 2 b or 2 c also leads to the formation of 3 a or 3 b . Furthermore, the reactivity of these compounds towards reduction agents was investigated, leading to [K2][(L1Ni)2(μ,η2 : 2-P4)] ( 4 ) and [K@18-c-6(thf)3][(L1Ni)2(μ,η3 : 3-E3)] (E=P ( 5 a ), As ( 5 b )), respectively. Compound 4 shows an unusual planarization of the initial Ni2P4-prism. All products were comprehensively characterized by crystallographic and spectroscopic methods.  相似文献   

9.
UV photolysis of [CpFeII(CO)3]+ PF66? (I) or [CpFeII6-toluene)]+ PF6?? (II) in CH3CN in the presence of 1 mole of a ligand L gives the new air sensitive, red complexes [CpFeII(NCCH3)2L]+PF6? (III, L = PPh3; IV; L = CO; VIII, L = cyclohexene; IX, L = dimethylthiophene) and the known air stable complex [CpFeII(PMe3)2(NCMe)]+ PF6? (V). The last product is also obtained by photolysis in the presence of 2 or 3 moles of PMe3. In the presence of dppe, the known complex [CpFeII (dppe)(NCCH3)]+ (XI) is obtained. Complex III reacts with CO under mild conditions to give the known complex [CpFe(NCCH3)(PPh3)CO]+ PF6? (X). UV photolysis of I in CH3CN in the presence of 1-phenyl-3,4-dimethylphosphole (P) gives [CpFeIIP3]+ PF6? (XII); UV photolysis of II in CH2Cl2 in the presence of 3 moles of PMe3 or I mole of tripod (CH3C(CH2Ph2)3) provides an easy synthesis of the known complexes [CpFeII(PMe3)3]+ PF6? (VII) or [CpFeIIη3-tripod]+ PF6t- (XIII). Since I and II are easily accessible from ferrocene, these photolytic syntheses provide access to a wide range of piano-stool cyclopentadienyliron(II) cations in a 2-step process from ferrocene.  相似文献   

10.
The synthesis and some reactions of the Ru(II) and Ru(IV) half-sandwich complexes [RuCp(EPh3)(CH3CN)2]+ (E=P, As, Sb, Bi) and [RuCp(EPh3)(η3-C3H5)Br]+ have been investigated. The chemistry of this class of compounds is characterized by a competitive coordination of EPh3 either via a RuE or a η6-arene bond, where the latter is favored when the former is weaker, that is in going down the series. Thus in the case of Bi, the starting material [RuCp(CH3CN)3]+ does not react with BiPh3 to give [RuCp(BiPh3)(CH3CN)2]+ but instead gives only the η6-arene species [RuCp(η6-PhBiPh2)]+ and [(RuCp)2(μ-η66-Ph2BiPh)]2+. Similarly, the EPh3 ligand can be replaced by an aromatic solvent or an arene substrate. Thus, the catalytic performance of [RuCp(EPh3)(CH3CN)2]+ for the isomerization of allyl-phenyl ethers to the corresponding 1-propenyl ethers is best with E=P, while the conversion drops significantly using the As and Sb derivatives. By the same token, only [RuCp(PPh3)(CH3CN)2]+ is stable in a non-aromatic solvent, whereas both [RuCp(AsPh3)(CH3CN)2]+ and [RuCp(SbPh3)(CH3CN)2]+ rearrange upon warming to [RuCp(η6-PhEPh2)]+ and related compounds. In addition, the potential of [RuCp(EPh3)(CH3CN)2]+ as precatalysts for the transfer hydrogenation of acetophenone and cyclohexanone has been investigated. Again aromatic substrates are clearly less suited than non-aromatic ones due to facile η6-arene coordination leading to catalyst's deactivation.  相似文献   

11.
Electrochemically converting NO3 into NH3 offers a promising route for water treatment. Nevertheless, electroreduction of dilute NO3 is still suffering from low activity and/or selectivity. Herein, B as a modifier was introduced to tune electronic states of Cu and further regulate the performance of electrochemical NO3 reduction reaction (NO3RR) with dilute NO3 concentration (≤100 ppm NO3−N). Notably, a linear relationship was established by plotting NH3 yield vs. the oxidation state of Cu, indicating that the increase of Cu+ content leads to an enhanced NO3-to-NH3 conversion activity. Under a low NO3−N concentration of 100 ppm, the optimal Cu(B) catalyst displays a 100 % NO3-to-NH3 conversion at −0.55 to −0.6 V vs. RHE, and a record-high NH3 yield of 309 mmol h−1 gcat−1, which is more than 25 times compared with the pristine Cu nanoparticles (12 mmol h−1 gcat−1). This research provides an effective method for conversion of dilute NO3 to NH3, which has certain guiding significance for the efficient and green conversion of wastewater in the future.  相似文献   

12.
A dicationic triruthenium complex containing a μ3-η3-C3 ring, [(Cp*Ru)3(μ3-η3-C3MeH2−)(μ3-CH)(μ-H)]2+ ( 1 a , Cp*=η5-C5Me5), reacted with ammonia to yield a μ-amido complex, [(Cp*Ru)33-η3-CHCMeCH) (μ3-CH)(μ-NH2)]2+ ( 5 ), via N−H bond scission. Subsequent treatment with base resulted in C−N bond formation to yield a μ3-η2:η2-1-azabutadien-4-yl complex, [(Cp*Ru)3(μ3-CH)(μ3-η2:η2-NH=CH−CMe=CH−)]+ ( 6 a ). The azaruthenacyclopentadiene skeleton was alternatively synthesized by the photolysis of mono-cationic complex [(Cp*Ru)3(μ3-η3-C3RH2−)(μ3-CH)]+ ( 2 a ; R=Me, 2 b ; R=H) in the presence of ammonia. The C3 ring skeleton was broken via the electron transfer to the π*(C−C) orbital in the C3 ring, and a transiently generated unsaturated μ3-allylic species can take up ammonia, resulting in N−H bond scission followed by C−N bond formation.  相似文献   

13.
The emission from the first negative system, N2+(B 2Σ+u)→N2+(X 2Σ+g)+, is studied in the flowing nitrogen afterglow of a DC arc plasma. Investigation of the spectrum shows overpopulation of the vibrational levels 6 and 7 of the excited molecular ion, N2+(B 2Σ+u). Selective excitation of these levels is explained by a charge exchange reaction between atomic ions in the ground state and metastable molecules in the N2(A 3Σ+u) state. The emitted intensity of the first negative system is shown to be linear with electron density ne for ne>2×1016 m−3, a higher-order dependence exists below this value. This is consistent with population of N2+(B 2Σ+u) by atomic ions, N+.  相似文献   

14.
The 300 K reactions of O2 with C2(X 1Σ+g), C2(a 3 Πu), C3(X? 1Σ+g) and CN(X 2Σ+), which are generated via IR multiple photon dissociation (MPD), are reported. From the spectrally resolved chemiluminescence produced via the IR MPD of C2H3CN in the presence of O2, CO molecules in the a 3Σ+, d 3Δi, and e 3Σ? states were identified, as well as CH(A 2Δ) and CN(B 2Σ+) radicals. Observation of time resolved chemiluminescence reveals that the electronically excited CO molecules are formed via the single-step reactions C2(X 1Σ+g, a 3Πu) + O2 → CO(X 1Σ+ + CO(T), where T denotes are electronically excited triplet state of CO. The rate coefficients for the removal of C2(X 1Σ+g) and C2(a 3Πu) by O2 were determined both from laser induced fluorescence of C2(X 1Σ+g) and C2(a 3Πu), and from the time resolved chemiluminescence from excited CO molecules, and are both (3.0 ± 0.2)10?12 cm3 molec?1 s?1. The rate coefficient of the reaction of C3 with O2, which was determined using the IR MPD of allene as the source of C3 molecules, is <2 × 10?14 cm3 molec?1 s?1. In addition, we find that rate coefficients for C3 reactions with N2, NO, CH4, and C3H6 are all < × 10?14 cm3 molec?1 s?1. Excited CH molecules are produced in a reaction which proceeds with a rate coefficient of (2.6 ± 0.2)10?11 cm3 molec?1 s?1. Possible reactions which may be the source of these radicals are discussed. The reaction of CN with O2 produces NCO in vibrationally excited states. Radiative lifetime of the ā 2Σ state of NCo and the ā 1Πu(000) state of C3 are reported.  相似文献   

15.
Force Constants of Compounds of the Type (CH3)3ElCl+X?(El = N, P, As, Sb; X? = SbCl6?) For the cations (CH3)3NCl+ ( 1 ), (CH3)3PCl+ ( 2 ), (CH3)3AsCl+ ( 3 ), and (CH3)3SbCl+ ( 4 ) a normal coordinate analysis using a general valence force field is performed by the method of Fadini. The force constants are discussed. Calculations of the potential energy distribution show, that the skeletal vibrations in 4 are all characteristic vibrations, but there is a strong coupling of vibrations in 1 .  相似文献   

16.
Disupersilylmetals (tBu3Si)2M and Supersilylmetal Halides tBu3SiMX with M ? Zn, Cd, Hg: Syntheses, Properties, Structures Disupersilylmetals (tBu3Si)2Zn (colorless), (tBu3Si)2Cd (light yellow), (tBu3Si)2Hg (light yellow), and supersilylmetal halides tBu3SiZnCl(THF) (colorless), tBu3SiCdI (colorless), tBu3SiHgCl (colorless) are obtained in THF by the action of tBu3SiNa on ZnCl2, CdI2, HgCl2 in the molar ratio 2:1 and 1 :1, respectively. THF can be exchanged by TMEDA under formation of tBu3SiZnCl(TMEDA), and (tBu3Si)2Zn transforms by the action of BiCl3 or BBr3 into tBu3SiZnCl (colorless) and tBu3SiZnBr (colorless), respectively. As to X-ray crystal structure analyses, the compounds (tBu3Si)2M are monomeric with a linear SiMSi framework, whereas tBu3SiZnBr and tBu3SiHgCl are tetrameric, the former with a regular, the latter with a pronounced irregular cubic M4X4 framework. The compounds are thermal stable up to 200°C (exception (tBu3Si)2Cd), photolabile, and comparatively inert for water and oxygen. The disupersilylmetals work as sources of supersilyl radicals tBu3Si (on irradiation) and as mild supersilanidation agents (e.g. (tBu3Si)2Zn/BBr3tBu3SiZnBr/tBu3SiBBr2), the supersilylmetal halides as Lewis acids (formation of tBu3SiMX · donor) and electrophiles (e.g. tBu3SiHgCl/RLi → tBu3SiHgR/LiCl).  相似文献   

17.
Complex fac‐[Fe(CO)3(TePh)3]? was employed as a “metallo chelating” ligand to synthesize the neutral (CO)3Mn(μ‐TePh)3Fe(CO)3 obtained in a one‐step synthesis by treating fac‐[Fe(CO)3(TePh)3]? with fac‐[Mn‐(CO)3(CH3CN)3]+. It seems reasonable to conclude that the d6 Fe(II) [(CO)3Fe(TePh)3]? fragment is isolobal with the d6 Mn(I) [(CO)3Mn(TePh)3]2? fragment in complex (CO)3Mn(μ‐TePh)3Fe(CO)3. Addition of fac‐[Fe(CO)3(TePh)3]? to the CpNi(I)(PPh3) in THF resulted in formation of the neutral CpNi(TePh)(PPh3) also obtained from reaction of CpNi(I)(PPh3) and [Na][TePh] in MeOH. This investigation shows that fac‐[Fe(CO)3(TePh)3]? serves as a tridentate metallo ligand and tellurolate ligand‐transfer reagent. The study also indicated that the fac‐[Fe(CO)3(SePh)3]? may serve as a better tridentate metallo ligand and chalcogenolate ligand‐transfer reagent than fac‐[Fe(CO)3(TePh)3]? in the syntheses of heterometallic chalcogenolate complexes.  相似文献   

18.
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

19.
Concentration‐optimized CaSc2O4:0.2 % Ho3+/10 % Yb3+ shows stronger upconversion luminescence (UCL) than a typical concentration‐optimized upconverting phosphor Y2O3:0.2 % Ho3+/10 % Yb3+ upon excitation with a 980 nm laser diode pump. The 5F4+5S25I8 green UCL around 545 nm and 5F55I8 red UCL around 660 nm of Ho3+ are enhanced by factors of 2.6 and 1.6, respectively. On analyzing the emission spectra and decay curves of Yb3+: 2F5/22F7/2 and Ho3+: 5I65I8, respectively, in the two hosts, we reveal that Yb3+ in CaSc2O4 exhibits a larger absorption cross section at 980 nm and subsequent larger Yb3+: 2F5/2→Ho3+: 5I6 energy‐transfer coefficient (8.55×10?17 cm3 s?1) compared to that (4.63×10?17 cm3 s?1) in Y2O3, indicating that CaSc2O4:Ho3+/Yb3+ is an excellent oxide upconverting material for achieving intense UCL.  相似文献   

20.
Strongly enhanced N2 first positive emission N2(B 3Πg → A 3Σ+u) has been observed on addition of N atoms into a flowing mixture of Cl and HN3. The dependence of the emission intensity on N atom concentration gave a rate constant for the reaction N + N3 → N2(B 3Πg) + N2(X 1Σ+g) of i(1.6 ± 1.1) × 10?11 cm3 molecule?1 s?1. That for the reaction Cl + HN3 → HCl + N3 is (8.9 ± 1.0) × 10?13 cm3 molecule?1 s?1 from the decay of the emission. Comparison of the emission intensity in ClHN3 with that in ClHN3N gave the rate constant of the reaction N3 + N3 → N2(B 3Πg) + 2N2(X 1Σ+g) as 1.4 × 10?12 cm3 molecule?1 s?1 on the assumption that N + N3 yields only N2(B 3Πg) + N2(X 1Σ+g).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号