首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transport coefficients of air,argon-air,nitrogen-air,and oxygen-air plasmas   总被引:1,自引:1,他引:1  
Calculated values of the viscosity, thermal conductivity and electrical conductivity of air and mixtures of air and argon, air and nitrogen, and air and oxygen at high temperatures are presented. In addition, combined ordinary, pressure, and thermal diffusion coefficients are given for the gas mixtures. The calculations, which assione local thermodynamic equilibrium, are performed for atmospheric pressure plasmas in the temperature range from 300 to 30,000 K. The results for air plasmas are compared with those of published theoretical and experimental studies. Significant discrepancies are found with the other theoretical studies; these are attributed to differences in the collision integrals used in calculating the transport coefficients. A number of the collision integrals used here are significantly more accurate than values used previously, resulting in more reliable values of the transport coefficients.  相似文献   

2.
Calculated values of the viscosity, thermal conductivity, and electrical conductivity of hydrogen and mixtures of argon and hydrogen at high temperatures are presented. Combined ordinary, pressure, temperature, and electric field diffusion coefficients are also given for the mixtures. The calculations, which assume local thermodynamic equilibrium, are performed for atmospheric pressure plasmas in the temperature range from 300 to 30,000 K. The results are compared with those of previously published studies. Generally, the agreement is reasonable; those discrepancies that exist are attributed to the improved values of some of the collision integrals used here in calculating the transport coefficients.  相似文献   

3.
Reliable values of the viscosity in thermal argon plasmas are most important for our understanding of the momentum transfer and for realistic modeling of various plasma applications. Despite numerous attempts to determine reliable viscosity values over the last three decades, discrepancies still exist among the data reported by different authors. In this paper, a critical analysis is undertaken of calculated and experimental data of the argon viscosity based on recent publications. Our recalculation of viscosities in thermal argon plasmas are performed by using Lennard-Jones, Morse, Aziz, and exponential repulsive potentials for Ar-Ar atom interactions in different temperature ranges from 300 to 20,000 K. The contributions of elastic collisions of e-Ar, e-Ar+, and Ar+-Ar, as well as charge exchange of Ar+-Ar, to the viscosity become important with increasing temperature and degree of ionization in argon plasmas. Based on a critical analysis and recalculations, improved values of the argon viscosity are recommended, covering temperatures from 300 to 20,000 K. Polynomial expressions have been developed for calculating argon viscosities, which will be useful for numerical work and other applications of thermal argon plasmas at atmospheric pressure.  相似文献   

4.
Films were produced by plasma enhanced chemical vapor deposition (PECVD) of tetramethylsilane (TMS)–helium–argon mixtures with either oxygen or nitrogen in a vacuum system fed with radiofrequency power. Actinometric optical emission spectroscopy was used to determine trends in the concentrations of plasma species of interest (H, CH, O, CO, and CN) as a function of the ratio of the inorganic reactive gas (oxygen or nitrogen) to the monomer (TMS) in the system feed. As the ratio of oxygen to TMS in the feed is increased, the degree of oxygenation of the deposited material, as revealed by transmission infrared spectroscopy, is also increased. Similarly, the degree of nitrogenation of the films increases with increasing nitrogen to monomer ratio in the feed. Strong correlations exist between the plasma concentrations of the above-mentioned plasma species and film structure and composition. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1873–1879, 1998  相似文献   

5.
The net volumetric emission was calculated for argon plasmas at atmospheric pressure in the presence of metal vapors for different elements, over the temperature range from 3000 to 30,000 K. The computations are based on the escape factor model, using a semi-empirical method for the determination of line profiles and line broadening effects. Results for iron, .silicon, and aluminum show an important influence of the presence of even the smallest concentrations of the metal vapors on the net emission coefficient of the plasma. The effect is strongest for iron, followed by aluminum and .silicon. Special attention is given to self-absorption effects which are most important in the first millimeter o% the optical path of the emitted radiation. The effect is incorporated into the calculation procedure of the net emission coefficient and can be used as a volumetric energy sink as long as the absorption length is shorter than the radius of the control volume used in the computation scheme.  相似文献   

6.
In this paper we present numerical efficient methods for the computation ofthermodynamic and transport properties of nonequilibrium thermalplasmas. Thermodynamic properties of mono- and diatomic speciesare calculated directly from partition functions. The evaluation oftransport properties is based on the kinetic theory using the classicalChapman–Enskog approach to solve the heavy particle Boltzmannequation. A multitemperature model is used to consider thermalnonequilibrium.  相似文献   

7.
In this paper, calculated values of the viscosity and thermal conductivity of atomic nitrogen, taking into account three species (the ground and two excited states), are presented. The calculations, which assume that the temperature dependent probability of occupation of the states is given by the Boltzmann factor, are performed for atmospheric-pressure in the temperature range from 1,000 to 20,000 K. Six collision integrals are used in calculating the transport coefficients and we have introduced new averaged collision integrals where the weight associated at each interacting species pair is the probable collision frequency. The influence of the collision integral values and energy transfer between two different species is studied. These results are compared which those of published theoretical studies.  相似文献   

8.
Polybenzoxazine (PBZZ) thin films can be fabricated by the plasma‐polymerization technique with, as the energy source, plasmas of argon, oxygen, or hydrogen atoms and ions. When benzoxazine (BZZ) films are polymerized through the use of high‐energy argon atoms, electronegative oxygen atoms, or excited hydrogen atoms, the PBZZ films that form possess different properties and morphologies in their surfaces. High‐energy argon atoms provide a thermodynamic factor to initiate the ring‐opening polymerization of BZZ and result in the polymer surface having a grid‐like structure. The ring‐opening polymerization of the BZZ film that is initiated by cationic species such as oxygen atoms in plasma, is propagated around nodule structures to form the PBZZ. The excited hydrogen atom plasma initiates both polymerization and decomposition reactions simultaneously in the BZZ film and results in the formation of a porous structure on the PBZZ surface. We evaluated the surface energies of the PBZZ films polymerized by the action of these three plasmas by measuring the contact angles of diiodomethane and water droplets. The surface roughness of the films range from 0.5 to 26 nm, depending on the type of carrier gas and the plasma‐polymerization time. By estimating changes in thickness, we found that the PBZZ film synthesized by the oxygen plasma‐polymerization process undergoes the slowest rate of etching in CF4 plasma. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4063–4074, 2004  相似文献   

9.
准确测定钛合金粉末微注射成形脱脂坯中氧氮氢含量对钛合金的粉末微注射工艺改进有很大指导作用。采用工业镍板经过表面打磨、酸洗、加工成固定质量的镍粒来代替市售的镍助熔剂,通过自制镍粒预先加入设备预脱气减少空白影响的方式建立了脉冲熔融-红外/热导法测定钛合金粉末微注射成形的脱脂坯中氧氮氢含量的方法。实验表明,镍粒助熔剂与石墨坩埚经二次脱气,可确保镍粒助熔剂的空白降至极低值以代替市售的镍篮、镍屑等助熔剂。钛合金粉末微注射成形脱脂坯采用振动磨形式加工至0.178 mm以下,镍粒的加入量为1.5 g,分析功率为5 300 W时,可以获得稳定准确的结果。采用实验方法对脱脂坯实际样品进行测定,其相对标准偏差(RSD,n=6)分别为0.080%~0.47%、0.28%~1.3%和1.6%~2.0%;采用加入钛合金标准样品进行加标回收实验,氧氮氢加标回收率分别在95.7%~104%、97.8%~100%及96.6%~103%。方法满足脱脂坯中的氧氮氢快速检测要求的同时,极大地降低了分析成本。  相似文献   

10.
In this paper, the calculated values of the viscosity and thermal conductivity of nitrogen plasma are presented taking into account five (e, N, N+, N2 and N2+) or eight (e, N(4S), N(2P), N(2D), N(R), N+, N2 and N2+) species. The calculations are based on the supposition that the temperature dependent probability of occupation of the states is given by the Boltzmann factor. The domain for which the calculations are performed, is for p = 1 and 10 atm in the temperature range from 5,000 K to 15,000 K. Classical collision integrals are used in calculating the transport coefficients and we have introduced new averaged collision integrals where the weight associated at each interacting species pair is the probable collision frequency. The influence of the collision integral values and energy transfer between two different species is studied. These results are compared which those of published theoretical studies.  相似文献   

11.
Two N‐donor‐functionalised ionic liquids (ILs), 1‐ethyl‐1,4‐dimethylpiperazinium bis(trifluoromethylsulfonyl)amide ( 1 ) and 1‐(2‐dimethylaminoethyl)‐dimethylethylammonium bis(trifluoromethylsulfonyl)amide ( 2 ), were synthesised and their electrochemical and transport properties measured. The data were compared with the benchmark system, N‐butyl‐N‐methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ( 3 ). Marked differences in thermal and electrochemical stability were observed between the two tertiary‐amine‐functionalised salts and the non‐functionalised benchmark. The former are up to 170 K and 2 V less stable than the structural counterpart lacking a tertiary amine function. The ion self‐diffusion coefficients (Di) and molar conductivities (Λ) are higher for the IL with an open‐chain cation ( 2 ) than that with a cyclic cation ( 1 ), but less than that with a non‐functionalised, heterocyclic cation ( 3 ). The viscosities (η) show the opposite behaviour. The Walden [Λ∝(1/η)t] and Stokes–Einstein [Di/T)∝(1/η)t] exponents, t, are very similar for the three salts, 0.93–0.98 (±0.05); that is, the self‐diffusion coefficients and conductivity are set by η. The Di for 1 and 2 are the same, within experimental error, at the same viscosity, whereas Λ for 1 is approximately 13 % higher than that of 2 . The diffusion and molar conductivity data are consistent, with a slope of 0.98±0.05 for a plot of ln(ΛT) against ln(D++D?). The Nernst–Einstein deviation parameters (Δ) are such that the mean of the two like‐ion VCCs is greater than that of the unlike ions. The values of Δ are 0.31, 0.36 and 0.42 for 3 , 1 and 2 , respectively, as is typical for ILs, but there is some subtlety in the ion interactions given 2 has the largest value. The distinct diffusion coefficients (DDC) follow the order ${D{{{\rm d}\hfill \atop - - \hfill}}}$ <${D{{{\rm d}\hfill \atop ++\hfill}}}$ <${D{{{\rm d}\hfill \atop +- \hfill}}}$ , as is common for [Tf2N]? salts. The ion motions are not correlated as in an electrolyte solution: instead, there is greater anti‐correlation between the velocities of a given anion and the overall ensemble of anions in comparison to those for the cationic analogue, the anti‐correlation for the velocities of which is in turn greater than that for a given ion and the ensemble of oppositely charged ions, an observation that is due to the requirement for the conservation of momentum in the system. The DDC also show fractional SE behaviour with t~0.95.  相似文献   

12.
Multi-temperature thermal plasmas have often to be considered to account for the nonequilibrium effects. Recently André et al. have developed the calculation of concentrations in a multi-temperature plasma by artificially separating the partition functions into a product by assuming that the excitation energies are those of the lower levels (electronic, vibration, and rotation). However, at equilibrium, differences, increasing with temperature, can be observed between partition functions calculated rigorously and with their method. This paper presents a modified method where it has been assumed that the preponderant rotational energy is that of the vibrational level v=0 of the ground electronic state and the preponderant vibrational energy is that of the ground electronic state. The internal partition function can then be expressed as a product of series expressions. At equilibrium for N 2 and N 2 + partition functions the values calculated with our method differ by less than 0.1% from those calculated rigorously. The calculation has been limited to three temperatures: heavy species Th , electrons Te , and vibrational T v temperatures. The plasma composition has been calculated by minimizing the Gibbs free enthalpy with the steepest descent numerical technique. The nonequilibrium properties have been calculated using the method of Devoto, modified by Bonnefoi and Aubreton. The ratio =Te/Th was varied between 1 and 2 as well as the ratio v =T v /T h for a nitrogen plasma. At equilibrium the corresponding equilibrium transport properties of Ar and N 2 are in good agreement with those of Devoto and Murphy except for T>10,000 K where we used a different interaction potential for N–N + . The effects of v and e on thermodynamic and transport properties of N 2 are then discussed.  相似文献   

13.
Numerical calculations are reported which simulate atmospheric-pressure radiofrequency induction plasmas consisting of either pure argon or mixtures of argon with hydrogen, nitrogen, or oxygen. These calculations are compared to observations of laboratory plasmas generated with the same geometry and run conditions. The major features of the laboratory plasmas are predicted well by the calculations: the pure argon plasma is the largest, with the argon-oxygen plasma slightly smaller. The argon-nitrogen plasma is considerably smaller and the argon-hydrogen plasma is the shortest, although somewhat fatter than the argon-nitrogen case. The calculations are not entirely successful in predicting the exact location of the plasmas relative to the coils. A likely explanation is that there is significant uncertainty regarding the actual power coupled to the laboratory plasmas.  相似文献   

14.
Inclusion of conductive particles is a convenient way for the enhancement of electrical and thermal conductivities of polymers. However, improvement of the mechanical properties of such composites has remained a challenge. In this work, maleated polyethylene is proposed as a novel matrix for the production of conductive metal–thermoplastic composites with enhanced mechanical properties. The effects of two conductive particles (iron and aluminum) on the morphological, mechanical, electrical, and thermal properties of maleated polyethylene were investigated. Morphological observations revealed that the matrix had excellent adhesion with both metal particles. Increase in particle concentration was shown to improve the tensile strength and modulus of the matrix significantly with iron being slightly more effective. Through‐plane electrical conductivity of maleated polyethylene was also substantially improved after adding iron particles, while percolation was observed at particle contents of around 20–30% vol. In the case of aluminum, no percolation was observed for particle contents of up to 50% vol., which was linked to the orientation of the particles in the in‐plane direction due to the squeezing flow. Inclusion of particles led to substantial increase (over 700%) in the thermal conductivities of both composites. The addition of high concentrations of metal particles to matrix led to the creation of two groups of materials: (i) composites with high electrical and thermal conductivities and (ii) composites with low electrical and high thermal conductivities. Such characteristics of the composites are expected to provide a unique opportunity for applications where a thermally conductive/electrically insulating material is desired. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Mutual diffusion coefficients measured on the volume-fixed frame of reference are reported for KSCN-H2O at 25°C over the concentration range 0.0 to 10.26 mol-dm–3. The diffusion coefficient at infinite dilution was obtained from limiting ionic equivalent conductances of K+ and SCN. Low concentration conductances of KSCN-H2O at 25°C used to obtain the limiting ionic equivalent conductance of SCN are reported. Values of density and viscosity for this system are reported from 0.0 to 10.30 mol-dm–3. Osmotic coefficienss of KSCN-H2O at 25°C were measured by the isopiestic method. These are reported over the concentration range of 0.30 to 24.94 molal (saturation). Values of thermodynamic diffusion coefficients for the concentration range 0.0 to 10.26 mol-dm–3 are tabulated. Results are compared to other potassium salts with monovalent anions at 25°C.  相似文献   

16.
Electron energy distribution functions (eedf) and rate and transport coefficients for H2/H/CH4 mixtures have been calculated by solving a stationary Boltzmann equation as a function of reduced electric field E/N, of molar fraction, and of different concentrations of electronically excited states. Superelastic electronic collisions superimpose structures to eedf especially for E/N values < 40 Td.  相似文献   

17.
The emission characteristics of nickel ionic lines in low-pressure laser-induced plasmas are investigated when argon, krypton, nitrogen, or air gas was employed as the plasma gas. The spectrum patterns and the relative intensities of the ionic lines are measured with and without a blind cylinder surrounding the sample surface to separate the detected emission area into two portions roughly: an initial breakdown zone and an expansion zone of the plasma. Their emission intensities are strongly dependent on both the kind and the pressure of the plasma gas. Different major ionic lines are observed in the argon and the krypton plasmas: for example, the Ni II 230.010-nm line (8.25 eV) for argon and the Ni II 231.604-nm line (6.39 eV) for krypton. The excitation mechanism of these ionic lines is considered to be a resonance charge-transfer collision with argon or krypton ion due to good energy matching to the corresponding energy levels of nickel ion. These ionic lines measured with the blind cylinder at reduced pressures of around 1300 Pa give the largest signal-to-background ratios; therefore, the analytical application under such optimum plasma conditions is recommended.  相似文献   

18.
MoO2/rGO (reduced graphite oxide) composites have been synthesized by hydrothermal method followed by anneal and characterized by X‐ray diffraction (XRD) and scanning electron microscope (SEM). Galvanostatic charge/discharge testing and electrochemical impedance spectroscopy (EIS) techniques are employed to evaluate the kinetic behaviors of the MoO2/rGO during lithiation/delithiation. The obtained MoO2‐based materials have monoclinic crystal structure, and worm like shape with average dimensions of 100‐200 nm width and 500 nm‐1 μm length. There are two steps of lithium ion intercalation/de‐intercalation for the MoO2/rGO anode at the potential ranging from 1.0 to 3.5 V, locating at ELi/Li+ = 1.60/1.75 V, 1.25/1.40 V, and the first discharge and charge capacities are, respectively, 221.0 and 185.4 mAh g?1. The resistances of RSEI and RCT for the MoO2/rGO anode are 2‐4 Ω and below 5 Ω. Moreover, the lithium diffusion coefficient calculated from the EIS measurement is about 3.6×10?9 cm2 s?1.  相似文献   

19.

土壤中的有机碳和全氮是评定土壤肥力的关键因素,快速准确测定土壤中的有机碳和全氮对于评价土壤肥力、研究碳氮与植物生长代谢关系、进一步提高作物产量与质量有重要的意义. 针对目前土壤中有机碳和全氮测量时间长、批量测试效率低的问题,采用红外吸收-热导法同时测定土壤中有机碳和全氮的含量,进一步提高了分析效率. 讨论了样品量、燃烧催化剂、无机碳干扰对有机碳和全氮测定的影响. 结果表明,试验最优条件为样品质量0.12 g,0.04 g氧化铜为燃烧催化剂,4 mol/L盐酸消除无机碳干扰. 以土壤标准样品建立仪器标准曲线,碳和氮的定量限分别为0.008 2%、0.043%. 方法应用于实际土壤样品测量,方法精密度小于3.0%,测量结果与标准方法对比,测量值在标准允许误差范围内.

  相似文献   

20.
研究了以Co,Sb,Fe及稀土Ce,La为起始原料,采用固相反应-放电等离子烧结(SPS)技术合成二元稀土填充式Skutterudite化合物(Ce,La)yFexCo4-xSb12(x=1.0,y=0—0.3),并对化合物的热电性能进行了研究。实验结果表明:在y=0—0.3组成范围内,采用固相反应-SPS法在900-1000K温度范围内合成了(Ce,La)yFexCo4-xSb12化合物,并伴有极少量的Sb相。(Ce,La),FexCo4-xSb12化合物呈现P型传导,化合物的晶格常数和Seebeck系数随Ce,La复合填充分数y的增加而增加,电导率和热导率由于Ce,La的复合填充大幅度降低,并且随着填充分数的增加进一步降低。当Ce,La复合填充分数为0.3时热导率达到最小值。在773K,富Co组成Ce0.1La0.2FeCo3Sb12化合物的最大无量纲热电性能指数ZTmax达0.46。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号