首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexation between polyelectrolyte and polyampholyte chains in poor solvent conditions for the polyelectrolyte backbone has been studied by molecular dynamics simulations. In a poor solvent a polyelectrolyte forms a necklace-like structure consisting of polymeric globules (beads) connected by strings of monomers. The simulation results can be explained by assuming the existence of two different mechanisms leading to the necklace formation. In the case of weak electrostatic interactions, the necklace formation is driven by optimization of short-range monomer-monomer attraction and electrostatic repulsion between charged monomers on the polymer backbone. In the case of strong electrostatic interactions, the necklace structure appears as a result of counterion condensation. While the short-range attractions between monomers are still important, the correlation-induced attraction between condensed counterions and charged monomers and electrostatic repulsion between uncompensated charges provide significant contribution to optimization of the necklace structure. Upon forming a complex with both random and diblock polyampholytes, a polyelectrolyte chain changes its necklace conformation by forming one huge bead. The collapse of the polyelectrolyte chain occurs due to the neutralization of the polyelectrolyte charge by polyampholytes. In the case of the random polyampholyte, the more positively charged sections of the chain mix with negatively charged polyelectrolyte forming the globular bead while more negatively charged chain sections form loops surrounding the collapsed core of the aggregate. In the case of diblock polyampholyte, the positively charged block, a part of the negatively charged block, and a polyelectrolyte chain form a core of the aggregate with a substantial section of the negatively charged block sticking out from the collapsed core of the aggregate. In both cases the core of the aggregate has a layered structure that is characterized by the variations in the excess of concentration of monomers belonging to polyampholyte and polyelectrolyte chains throughout the core radius. These structures appear as a result of optimization of the net electrostatic energy of the complex and short-range attractive interactions between monomers of the polyelectrolyte chain.  相似文献   

2.
The coupling of lipid molecules to polymer components in a planar biomimetic model membrane made of a lipid bilayer (dimyristoylphosphatidylcholine) supported by polyelectrolyte multilayers is studied. The polyelectrolyte support was prepared by layer-by-layer deposition of positively charged poly(allylamine hydrochloride) (PAH) and negatively charged poly(sodium 4-styrenesulfonate) (PSS). Two polymer sample terminations were considered: positively charged (PAH-terminated) and negatively charged (PSS-terminated). Neutron reflectometry studies showed that, whereas positively charged samples did not favor the deposition of lipid, negatively charged samples allowed the deposition of a lipid bilayer with a thickness of approximately 5 nm. In the latter case, formation of polyelectrolyte layers after the deposition of the lipid layer was also possible.  相似文献   

3.
The adsorption of sodium poly(4-styrene sulfonate) on oppositely charged beta-FeOOH particles is studied by electrooptics. The focus of this paper is on the release of condensed counterions from adsorbed polyelectrolyte upon surface charge overcompensation. The fraction of condensed Na+ counterions on the adsorbed polyion surface is estimated according to the theory of Sens and Joanny and it is compared with the fraction of condensed counterions on nonadsorbed polyelectrolyte. The relaxation frequency of the electrooptical effect from the polymer-coated particle is found to depend on the polyelectrolyte molecular weight. This is attributed to polarization of the layer from condensed counterions on the polyion surface, being responsible for creation of the effect from particles covered with highly charged polyelectrolyte. The number of the adsorbed chains is calculated also assuming counterion condensation on the adsorbed polyelectrolyte and semiquantative agreement is found with the result obtained from the condensed counterion polarizability of the polymer-coated particle. Our findings are in line with theoretical predictions that the fraction of condensed counterions remains unchanged due to the adsorption of highly charged polyelectrolyte onto weakly charged substrate.  相似文献   

4.
We report a self‐propelled Janus silica micromotor as a motion‐based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self‐propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s?1. Biotin‐functionalized Janus micromotors can specifically capture and rapidly transport streptavidin‐modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self‐propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab‐on‐chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications.  相似文献   

5.
With light scattering titrations, we show that complex coacervate core micelles (C3Ms) form from a diblock copolymer with a polyelectrolyte block and either an oppositely charged polyelectrolyte, a diblock copolymer with an oppositely charged polyelectrolyte or a mixture of the two. The effect of added salt and pH on both types of C3Ms is investigated. The hydrodynamic radius of mixed C3Ms can be controlled by varying the percentage of oppositely charged polyelectrolyte or diblock copolymer. A simple core-shell model is used to interpret the results from light scattering, giving the same trends as the experiments for both the hydrodynamic radii and the relative scattering intensities. Temperature has only a small effect on the C3Ms. Isothermal titration calorimetry shows that the complexation is mainly driven by Coulombic attraction and by the entropy gain due to counterion release.  相似文献   

6.
The adsorption of single polyelectrolyte molecules onto surfaces decorated with periodic arrays of charged patches was studied using Brownian dynamics simulations. A free-draining, freely jointed bead-rod chain was used to model the polyelectrolyte, and electrostatic interactions were incorporated using a screened Coulombic potential with the excluded volume accounted for by a hard-sphere potential. The simulations predicted that the polyelectrolyte lies close to the adsorbing surface if the patch length, surface charge density, and screening length are sufficiently large. Chain conformations were found to be very sensitive to patch length, patch spacing, and the nature of the charge on adjacent patches. This is due both to the size of the polymer relative to patch length and spacing and to the structure of the electric field near the surface. In some cases, the component of the radius of gyration parallel to the surface can be made smaller than its free-solution value, which is contrary to what is observed for a uniformly charged surface. Isolated charged patches were also considered, and significant adsorption was observed above a critical surface charge density. The results demonstrate how polyelectrolyte conformations can be controlled by the design of the charged patches and may be useful for applications in which adsorbed polyelectrolyte films play a key role.  相似文献   

7.
Polyelectrolyte gels are charged polymer networks with macro-ions fixed on the polymer chains. In the present paper, the fundamental aspects, properties and application of negatively charged polyelectrolyte gels are reviewed, focusing on the interaction between polyelectrolyte gels and proteins, the surface friction and mechanical strength of polyelectrolyte gels. These characteristic properties of polyelectrolyte gels have considerable potential for practical application, such as soft scaffold of cells, construction of biomimetic actuator and replacement of biological tissues.  相似文献   

8.
We report a systematic study by Langevin dynamics simulation on the energetics of complexation between two oppositely charged polyelectrolytes of same charge density in dilute solutions of a good solvent with counterions and salt ions explicitly included. The enthalpy of polyelectrolyte complexation is quantified by comparisons of the Coulomb energy before and after complexation. The entropy of polyelectrolyte complexation is determined directly from simulations and compared with that from a mean-field lattice model explicitly accounting for counterion adsorption. At weak Coulomb interaction strengths, e.g., in solvents of high dielectric constant or with weakly charged polyelectrolytes, complexation is driven by a negative enthalpy due to electrostatic attraction between two oppositely charged chains, with counterion release entropy playing only a subsidiary role. In the strong interaction regime, complexation is driven by a large counterion release entropy and opposed by a positive enthalpy change. The addition of salt reduces the enthalpy of polyelectrolyte complexation by screening electrostatic interaction at all Coulomb interaction strengths. The counterion release entropy also decreases in the presence of salt, but the reduction only becomes significant at higher Coulomb interaction strengths. More significantly, in the range of Coulomb interaction strengths appropriate for highly charged polymers in aqueous solutions, complexation enthalpy depends weakly on salt concentration and counterion release entropy exhibits a large variation as a function of salt concentration. Our study quantitatively establishes that polyelectrolyte complexation in highly charged Coulomb systems is of entropic origin.  相似文献   

9.
赵新军 《高分子科学》2014,32(5):568-576
A theoretical investigation on the pH-induced switching of mixed polyelectrolyte brushes was performed by using a molecular theory. The results indicate that the switching properties of mixed polyelectrolyte brushes are dependent on the pH values. At low pH, negatively charged chains adopt a compact conformation on the bottom of the brush while positively charged chains are highly stretched away from the surface. At high pH values, the inverse transformation takes place. The role of pH determining the polymer chains conformation and charge behavior of mixed polyelectrolyte brushes was analyzed. It is found that there exists a mechanism for reducing strong electrostatic repulsions: stretching of the chains. The H+ and OH- units play a more important role as counterions of the charged polymers do. The collapse of the polyelectrolyte chains for different pH values could be attributed to the screening of the electrostatic interactions and the counterion-mediated attractive interaction along the chains.  相似文献   

10.
The reactions of complex gels formed via the sorption of a poly(propylenimine) ampholyte dendrimer of the fourth generation by oppositely charged lightly cross-linked polyelectrolyte hydrogels with ionogenic micelle-forming surfactants have been studied. The sorption of surfactant ions likely charged relative to the complexed ampholyte dendrimer by complex gels is associated with two parallel chemical reactions controlled by the concentration of the surfactant and pH which give rise to the formation of network-dendrimer-surfactant tertiary complexes. The reactions of complex gels with surfactant ions likely charged relative to the network polyelectrolyte make it possible at different solution pHs to prepare both negatively and positively charged hydrogels reinforced by disperse particles of the dendrimer-surfactant complex.  相似文献   

11.
Associative phase separation (complex coacervation) in a mixture of oppositely charged polyelectrolytes can lead to different types of (inter-)polyelectrolyte complexes (soluble micelles, macroscopic precipitation). In a previous report [Langmuir 2004, 20, 2785-2791], we presented a model for the electrostatic free energy change when (weakly charged) polyelectrolyte forms a homogeneous complex phase. The influence of ionization of the polymer on the electrostatic free energy of the complex was incorporated but the influence of complex density neglected. In the present effort, cylindrical cells are assumed around each polyelectrolyte chain in the complex, and on the basis of the Poisson-Boltzmann equation, the electrostatic free energy is calculated as a function of the complex density. After combination with Flory-Huggins mixing free energy terms and minimization of the total free energy, the equilibrium complex density is obtained, for a given ratio of polycations to polyanions in the complex. The analysis is used in an example calculation ofpolyelectrolyte film formation by alternatingly applying a polycation and a polyanion solution. The calculation suggests that the often observed exponential growth of a polyelectrolyte film when the polymer is weakly charged has a thermodynamic origin: the polyelectrolyte complex shifts repeatedly between two equilibrium states of different densities and compositions. However, when the polyelectrolytes are strongly charged the difference in the compositions between the two equilibrium states is very small, and exponential growth by an absorption mechanism is no longer possible.  相似文献   

12.
Mean-field theory is used to derive criteria for the adsorption of a weakly charged polyelectrolyte molecule from salt solution onto surfaces patterned with charge and topography. For flat surfaces patterned with periodic arrays of charged patches, the adsorbed layer thickness predicted using mean-field theory and that found by Brownian dynamics simulations are in quantitative agreement in the strong-adsorption regime, which corresponds to sufficiently small kappa or sufficiently large |sigma(eff)q|, where kappa is the inverse Debye screening length, sigma(eff) is an effective surface charge density, and q is the charge on each segment of the polyelectrolyte. Qualitative agreement is obtained in the weak-adsorption regime, and for the case where surfaces are patterned with both charge and topography. For uniformly charged, sinusoidally corrugated surfaces, the theory predicts that the critical temperature required for adsorption can be greater than or less than the corresponding value for a flat surface depending on the relative values of kappa and the corrugation wave number. If the surface charge is also allowed to vary sinusoidally, then adsorption is predicted to occur only when the topography crests have a surface charge opposite to that of the polyelectrolyte. Surfaces patterned with rectangular indentations having charged bottoms which are separated by flat charged plateaus are investigated as well. Adsorption is predicted to occur even when the net surface charge is zero, provided that the plateaus have a charge opposite to that of the polyelectrolyte. If the charge on the plateaus and polyelectrolyte is the same, adsorption may still occur if electrostatic attraction from the indentation bottoms is sufficiently strong.  相似文献   

13.
The aggregation behaviors of the cationic and anionic (catanionic) surfactant vesicles formed by didodecyldimethylammonium bromide (DDAB)/sodium bis(2-ethylhexyl) phosphate (NaDEHP) in the absence and presence of a negatively charged polyelectrolyte are investigated. The amount of the charge on the vesicle can be tuned by controlling the DDAB/NaDEHP surfactant molar ratio. The charged vesicular dispersions made of DDAB/NaDEHP are mixed with a negatively charged polyelectrolyte, poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSAMA), to form complexes. Depending on the polyelectrolyte/vesicle charge ratio, complex flocculation or precipitation occurs. Characterization of the catanionic vesicles and the complexes are performed by transmission electron microscope (TEM), Cryo-TEM, dynamic light scattering (DLS), conductivity, turbidity, zeta potential, isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS) measurements.  相似文献   

14.
We describe the results of theoretical and experimental studies of the regular heterogeneities on a nanometer scale which are formed in the systems containing weakly charged polyelectrolytes due to the competition of ionic and hydrophobic interactions. In particular, we consider the effect of microphase separation in poor solvent polyelectrolyte solutions and gels and nano-self-assemblies emerging in the complexes of polyelectrolyte gels with oppositely charged surfactants. The practically important application connected with metal nanoparticles formation in regular microstructures in polyelectrolyte systems is considered as well.  相似文献   

15.
Interactions between two negatively charged mica surfaces across aqueous solutions containing various amounts of a 10% charged cationic polyelectrolyte have been studied. It is found that the mica surface charge is neutralized when the polyelectrolyte is adsorbed from a 10–50 ppm aqueous solution. Consequently no electrostatic double-layer force is observed. Instead an attractive force acts between the surfaces in the distance regime 250–100 Å. We suggest that this attraction is caused by bridging. Additional adsorption takes place when the polyelectrolyte concentration is increased to 100 and 300 ppm, and a long-range repulsion develops. This repulsive force is both of electrostatic and steric origin. The polyelectrolyte layer adsorbed from a 50 ppm solution does not desorb when the polyelectrolyte solution is replaced with an aqueous polyelectrolyte-free solution. Injection of sodium dodecyl sulfate (SDS) into the measuring chamber to a concentration of about 0.01 CMC (8.3 × 10−5M) does not affect the adsorbed layers or the interaction forces. However, when the SDS concentration is increased to 0.02 CMC (0.166 mM) the adsorbed layer expands dramatically due to adsorption of SDS to the polyelectrolyte chains. The sudden swelling suggests a cooperative adsorption of SDS to the preadsorbed polyelectrolyte layer and that the critical aggregation concentration between the polyelectrolyte and SDS at the surface is about 0.02 CMC. The flocculation behavior of the polyelectrolyte in solution upon addition of SDS was also examined. It was found that 0.16–0.32 mol SDS/mol charged segments on the polyelectrolyte is enough to make the solution slightly turbid.  相似文献   

16.
In order to produce silica/polyelectrolyte hybrid materials the adsorption of the polyelectrolyte poly(vinyl formamide-co-vinyl amine), P(VFA-co-VAm) was investigated. The adsorption of the P(VFA-co-VAm) from an aqueous solution onto silica surface is strongly influenced by the pH value and ionic strength of the aqueous solution, as well as the concentration of polyelectrolyte. The adsorption of the positively charged P(VFA-co-VAm) molecules on the negatively charged silica particles offers a way to control the surface charge properties of the formed hybrid material. Changes in surface charges during the polyelectrolyte adsorption were studied by potentiometric titration and electrokinetic measurements. X-ray photoelectron spectroscopy (XPS) was employed to obtain information about the amount of the adsorbed polyelectrolyte and its chemical structure. The stability of the adsorbed P(VFA-co-VAm) was investigated by extraction experiments and streaming potential measurements. It was shown, that polyelectrolyte layer is instable in an acidic environment. At a low pH value a high number of amino groups are protonated that increases the solubility of the polyelectrolyte chains. The solvatation process is able to overcompensate the attractive electrostatic forces fixing the polyelectrolyte molecules on the substrate material surface. Hence, the polyelectrolyte layer partially undergoes dissolving process.  相似文献   

17.
The effect of polyelectrolyte addition on the properties of an oil-in-water (O/W) microemulsion of weakly charged spherical micelles is studied. The 81 A radius O/W droplets in this system can be charged by the partial substitution of the nonionic surfactant by a cationic surfactant. The effect of the addition of poly(acrylic acid) (PAA), which is a charged pH-dependent polyelectrolyte, on the interactions between charged or noncharged droplets has been investigated using SANS. We have characterized the phase behavior of this pH-smart system as a function of the microemulsion and the polyelectrolyte concentration and the number of charges per droplet at three pH values: pH = 2, 4.5, and 12. In particular, an associative phase separation due to the bridging of the droplets by the neutral PAA chains through H-bonds is observed with extremely low PAA addition at low pH. At the opposite, an addition of PAA at pH = 4.5 generates a strong repulsive contribution between neutral droplets. Electrostatic bonds between charged droplets and PAA, controlled by the number of charges per droplet, are responsible for a pH drift and then for an associative phase separation similar to that observed at low pH. Finally, at high pH, the creation of electrostatic bonds between fully charged PAA and charged droplets liberates sufficiently counterions in solution at high droplet charge density to screen the electrostatic interactions and to allow an associative phase separation.  相似文献   

18.
Interactions between cationic bottle-brush polyelectrolyte layers adsorbed on mica across salt and oppositely charged surfactant solutions were investigated with the interferometric surface force apparatus, and the results were compared with what is known for similarly charged linear polyelectrolytes. Ellipsometric measurements demonstrated that the bottle-brush polyelectrolytes, which contain 45 units long poly(ethylene oxide) side chains, are more readily desorbed than linear equivalents when the ionic strength of the solution is increased. It is argued that this is due to the steric repulsion between the poly(ethylene oxide) side chains that reduces the surface affinity. The preadsorbed bottle-brush polyelectrolyte layers were also exposed to sodium dodecyl sulfate (SDS) solutions. It was found that the presence of SDS affected the force profiles less than observed for similarly charged linear polyelectrolytes. This observation was attributed to excluded volume constraints imposed by the poly(ethylene oxide) side chains that reduces the accessibility of the charged polyelectrolyte segments and counteracts formation of large aggregates within the layer.  相似文献   

19.
In this work, we have studied the interfacial properties of cationic polyelectrolyte (PE) and silica nanoparticle (NP) systems at macroscopic silica surfaces by means of ellipsometry. The influence of adsorbed layers on the interactions between silica surfaces was also investigated using the bimorph surface force apparatus. Added nanoparticles were observed to strongly swell the interfacial polyelectrolyte layers, an effect partly related to neutralization of charged polyelectrolyte groups. The effect was more pronounced for low charged than for highly charged polyelectrolytes. Overall, the presence of nanoparticles seemed to increase the repulsive interaction measured between silica surfaces. The force measured on approach was long range and quite strongly repulsive. On separation, an attractive bridging interaction was measured for polyelectrolyte-covered surfaces. For the low charged polyelectrolyte used in the study, the force turned repulsive on addition of nanoparticles. For the highly charged polyelectrolyte used, a change from a very strong attraction (involving a jump of the surfaces out of contact) to a very long-range elastic attractive force was observed on adding nanoparticles. The long-range elastic force indicates that polymer chains and nanoparticles form a transient network in the gap between the surfaces. The observed difference in the outward force curves may explain why the addition of nanoparticles appears to improve, e.g., shear-resistance and reflocculation characteristics of polymeric flocculants. Copyright 2000 Academic Press.  相似文献   

20.
An integral equation theory has been used as the basis for studying the structure of dispersions containing charged colloidal particles: globular protein molecules with a nonzero dipole moment, a polyelectrolyte and a low-molecular salt. It is demonstrated that there is an effective attraction between charged colloidal particles, which increases in the presence of charged polymer chains. The influence of the length of polyelectrolyte chains and of salt concentration on the partial structure factor of colloidal particles was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号