首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Densities of the binary mixtures of diethylcarbonate with benzene and substituted benzenes, namely toluene, bromobenzene, chlorobenzene and nitrobenzene have been measured as a function of the composition, at 293.15 K and atmospheric pressure using a bicapillary pycnometer with an accuracy of 4 parts in 104.The calculated excess molar volumes, V E were correlated with Redlich-Kister equation. The excess molar volumes are negative over the entire range of composition for the systems diethylcarbonate with benzene, toluene, bromobenzene and nitrobenzene. An inversion of the sign of V E is observed over some concentration for mixtures of diethylcarbonate with chlorobenzene. Partial molar volumes, Vi are also evaluated and their values have been extrapolated to zero concentration to obtain the limiting value at infinite dilution, Vo i . The numerical values of the excess molar volumes for binary mixtures decrease in the order: chlorobenzene > benzene > bromobenzene ≈ toluene > nitrobenzene. The results are explained in terms of dissociation of the self-associated solute molecules and the formation of aggregates between unlike molecules.  相似文献   

2.
The excess molar volumes V m E at atmospheric pressure and at 25°C for binary mixtures of diethyl carbonate with n-heptane, n-decane, n-tetradecane, 2,2,4-trimethylpentane, cyclohexane, benzene, toluene, or tetrachloromethane have been obtained over the whole mole-fraction range from densities measured with a vibrating-tube densimeter. The V m E are positive for all the systems investigated, except for the mixture with toluene which is negative. The results for V m E together with data previously published on excess molar enthalpies H m E and excess molar Gibbs energies G m E , suggest interactions between carbonate and hydrocarbons which are stronger with aromatic than with aliphatic hydrocarbons.Thermodynamics of binary mixtures containing organic carbonates, Part 10.  相似文献   

3.
Excess molar volumes (V E ) for binary mixtures of dimethyl sulphoxide (DMSO) with substituted benzenes have been measured at 303.15?K. The substituted benzenes include toluene, ethylbenzene, chlorobenzene, bromobenzene and nitrobenzene. The measured V E data is positive for the mixtures of DMSO with nitrobenzene and is completely negative over the entire composition range in the mixtures of toluene, ethylbenzene and chlorobenzene and an inversion in sign is observed in the bromobenzene system. The experimental results are analysed in terms of intermolecular interactions and effect of substitutents on benzene ring between unlike molecules.  相似文献   

4.
The Kirkwood–Buff (K-B) integrals play an important role in characterizing the intermolecular interactions in liquid mixtures. The interaction is represented by the K-B parameters, G AA,G BB, and G AB, which reflect correlation between like-like and like-unlike species in the mixture. The K-B integrals of binary mixtures of tetrahydrofuran with benzene, toluene, o-xylene, m-xylene, p-xylene and mesitylene at 298.15 K and atmospheric pressure have been computed from the experimental data of ultrasonic speed and density. We have used the similar inverse procedure (as proposed by Ben-Naim) to compute the K-B parameters of the mixture, in which thermodynamic information on mixtures, such as partial molar volumes, isothermal compressibility and experimental data of partial vapor pressures were used. A new route has been incorporated by using regular solution theory in the computation of excess Gibbs energy for obtaining the partial vapor pressures of binary liquid mixtures. The low values of excess entropy, S E≈0, obtained for these mixtures indicate the applicability of regular solution theory to the mixtures. The values of the K-B parameter, G AB, obtained using this procedure indicate that the correlation/affinity between THF and aromatic hydrocarbon molecules follows the order: benzene > toluene > o-xylene > m-xylene > p-xylene > mesitylene, which is in good agreement with the results obtained from the trends exhibited by the excess functions of these mixtures.  相似文献   

5.
Vapour pressures of butyl acetate?+?benzene or toluene or o- or m- or p-xylene were measured by static method at 298.15?±?0.01?K over the entire composition range. The activity coefficients and excess molar Gibb's free energies of mixing (G E) for these binary mixtures were calculated by fitting vapour pressure data to the Redlich–Kister equation using Barker's method of minimizing the residual pressure. The G E values for the binary mixtures containing benzene are positive; while these are negative for toluene, ortho, meta and para xylene system over the whole composition range. The G E values of an equimolar mixture for these systems vary in the order: benzene?>?m-xylene?>?o-xylene?>?p-xylene?>?toluene  相似文献   

6.
Abstract

The gas chromatographic method proposed by us for simple and accurate measurement of isothermal phase equilibria has been applied to the binary mixtures formed by alkylbenzenes amongst themselves. Results on the binary mixtures of: benzene - toluene, toluene + o-xylene, toluene + p-xylene, toluene + ethylbenzene, ethylbenzene + o-xylene and ethylbenzene + p-xylene are presented in this paper. The present measurements on benzene + toluene system at 40°C are in good agreement with the isothermal phase equilibrium data available in the literature.  相似文献   

7.
In this work we used the experimental result for calculating the thermal expansion coefficients α, and their excess values α E , and isothermal coefficient of pressure excess molar enthalpy and comparison the obtain results with Flory theory of liquid mixtures for the binary mixtures {methanol, ethanol, 1-propanol and 2-butanol-chloroform} at 288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, and 323.15 K. The excess thermal expansion coefficients α E and the isothermal coefficient of pressure excess molar enthalpy ((∂H mE/∂P) T,x for binary mixtures of {methanol and ethanol + chloroform} are S-shaped and for binary mixtures of {1-propanol and 2-butanol + chloroform} are positive over the mole fraction. The isothermal coefficient of pressure excess molar enthalpy (∂H mE/∂P) T,x , are negative over the mole fraction range for binary mixture of {1-propanol and 2-butanol + chloroform}. The calculated values by using the Flory theory of liquid mixtures show a good agreement between the theory and experimental.  相似文献   

8.
The viscosities, η, and refractive indices, n, of pure dimethylsulphoxide (DMSO), benzene, toluene, o‐xylene, m‐xylene, p‐xylene and mesitylene, and those of their 54 binary mixtures, with DMSO as common component, covering the whole composition range have been measured at 298.15, 303.15, 308.15, 313.15, and 318.15 K. From the experimental data, the deviations in viscosity, Δη and deviations in molar refraction, ΔRm have been calculated. The variation of these parameters with composition and temperature of the mixtures have been discussed in terms of molecular interaction in these mixtures. The effect of the number and position of the methyl groups in these aromatic hydrocarbons on molecular interactions in these mixtures has also been discussed. The free energies, ΔG*, enthalpies, ΔH* and entropies, ΔS* of activation of viscous flow have also been obtained by using Eyring viscosity equation. The ΔH* values were found independent of temperature. The dependence of these thermodynamic parameters on composition of the mixtures has been discussed. Further, the viscosities and refractive indices of these binary mixtures were calculated theoretically from pure component data by using various empirical and semi‐empirical relations and the results were compared with the experimental findings.  相似文献   

9.
The excess volumes and enthalpies of mixing of binary mixtures of ethyl iodide with benzene, toluene, o-xylene, m-xylene and p-xylene have been measured experimentally over the whole composition range at 25°C. Qualitatively the data have been explained on the basis of electron donoracceptor interactions between the ethyl iodide and aromatic hydrocarbons and also on the loss of favorable orientational order of the pure components. Flory's theory correctly predicts the sign and to some extent magnitude of the V E and H E values.  相似文献   

10.
Molar excess volumes of mixing VE for binary mixtures of furfuryl alcohol with the aromatic hydrocarbons benzene, toluene, ethylbenzene, and o-, m-, and p-xylene were determined for the entire composition range at 25°C. VE was negative for the mixtures containing benzene, toluene and pxylene but positive for mixtures containing ethylbenzene and o- and m-xylene. The results are discussed in terms of specific interaction present in the binary mixture and are compared with those previously reported for tetrahydrofuran, fur an or furfural binary mixtures with aromatic hydrocarbons.  相似文献   

11.
In this study, the diffusion behavior of methyl ethyl ketone (MEK)/toluene mixtures, with MEK molar fractions (x1) in the liquid source lower than 0.2, in polyisobutylene (PIB) was investigated with vapor‐sorption Fourier transform infrared attenuated total reflectance (FTIR‐ATR) spectroscopy. FTIR‐ATR Fickian diffusion models for both binary and ternary systems were used to determine diffusion coefficients. Obtained diffusion coefficients for MEK from the binary diffusion model did not agree with those determined previously for the diffusion of MEK/toluene mixtures, with x1 > 0.2, in PIB. When the ternary diffusion model was used, the main‐term and cross‐term diffusion coefficients of MEK were comparable. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 908–914, 2001  相似文献   

12.
The rate constant for the bimolecular combination of benzyl radicals in cyclohexane and toluene is determined as a function of temperature. Further, it is studied in cyclohexane–toluene mixtures of different compositions. In the entire range covered, 9.8 × 108 ? 2kt ? 9.0 × 109M?1·sec?1, the data are very well described by the Smoluchowski equation for a diffusion-controlled reaction to ground-state products using a spin statistical factor of 1/4, a temperature- and solvent-independent reaction distance, and the known diffusion coefficient of toluene.  相似文献   

13.
Densities (ρ) at different temperatures from 303.15 to 318.15 K, speeds of sound (u) and viscosities (η) at 303.15 K were measured for the binary mixtures of cyclohexanol with 2-chlorotoluene, 3-chlorotoluene and 4-chlorotoluene over the entire range of composition. The excess volumes (VE) for the mixtures have been computed from the experimental density data. Further, the deviation in isentropic compressibilities (Δκs) and deviation in viscosities (Δη) for the binary mixtures have been calculated from the speed of sound and viscosity data, respectively. The VE values and Δκs values were positive and Δη data were negative for all the mixtures over the whole range of composition at the measured temperatures. The calculated excess functions VE, Δκs and Δη were fitted to Redlich–Kister equation. The excess functions have been discussed in terms of molecular interactions between component molecules of the binary mixtures.  相似文献   

14.
Solute-solvent and solvent-solvent interactions were investigated for binary mixtures of an ionic liquid (IL) 2-hydroxy ethylammonium formate as with methanol, ethylene glycol and glycerol. The physicochemical properties of the solvent mixtures at 25 °C, over the whole range of mole fractions, were determined using solvatochromic probes. High normal polarity (ETNE_{T}^{N}) in the alcohol-rich region confirms solute-solvent interactions in this medium. Dipolarity/polarizability (π ) show a different trend to ETNE_{T}^{N} with a positive deviation from ideal behavior in IL-glycerol mixtures. However, these deviations for other solvent mixtures are insignificant. Contrary to what is observed for ETNE_{T}^{N} and π , hydrogen-bond donor (HBD) acidity and hydrogen-bond acceptor (HBA) basicity demonstrate similar trends. The applicability of the combined nearly-ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation for the correlation of various parameters provides a simple computational model to correlate and/or predict various solvatochromic parameters for many binary solvent systems.  相似文献   

15.
Densities and ultrasonic velocities were measured for binary liquid mixtures of ethyl acetoacetate (EAA) with chloroform (CHCl3) and dimethylsulphoxide (DMSO) over the entire composition range. These experimental values were used to calculate the adiabatic compressibility (βs), intermolecular free length (Lf), excess molar volume (VE), excess adiabatic compressibility (βsE) and excess intermolecular free length (LfE) for the liquid mixtures under consideration. In all the excess parameters, a positive deviation was observed in CHCl3–EAA binary mixture, whereas a slight negative deviation was found for EAA–DMSO binary liquid mixture. These deviations were explained in terms of molecular interactions between like and unlike molecules and further affirmed by UV–Vis spectroscopic measurements in terms of polar and non-polar environment in the close proximity of solvatochromic dye. Fourier transform infrared spectroscopy (FT-IR) and proton-nuclear magnetic resonance (H1 NMR) measurements have also been done to explain the molecular interaction in the binary liquid mixtures.  相似文献   

16.
The heterogeneous associating behavior of the aqueous binary mixtures of ethyl alcohol, ethylene glycol, glycerol and mono alkyl ethers of ethylene glycol, and aqueous ternary mixtures of equi-molar binary systems (i.e., mono alkyl ethers of ethylene glycol with ethyl alcohol, ethylene glycol and glycerol) have been investigated over the entire concentration range using accurately measured dielectric constants at 25 C. The concentration dependent values of the excess dielectric parameter εE and effective Kirkwood correlation factor g eff were determined using the measured values of the static dielectric constant, εo, at 1 MHz and the high frequency limiting dielectric constant ε = n D 2. The observed εE values in aqueous binary and ternary mixtures are negative over the entire concentration range, which implies the formation of heterogeneous complexes between these molecules that reduces the effective number of dipoles. The stoichiometric ratio corresponding to the maximum interaction in alcohol + water mixtures increases with an increase in the number of hydroxyl groups of the alcohol molecules, but for mono alkyl ethers of ethylene glycol + water mixtures it decreases with the increase in the molecular size of the mono alkyl ethers. In aqueous ternary mixtures the stoichiometric ratio for the maximum extent of heterogeneous interaction is governed by the molecular size of the mono alkyl ethers. It was also found that the strength of the heterogeneous H–bond connectivities in the water + alcohol systems decrease with an increase in the number of hydroxyl groups of the alcohol molecules. However in the case of water + mono alkyl ether binary mixtures and in ternary mixtures, the strength of H–bond connectivities increases with the increase in the molecular size of the mono alkyl ether. An analysis of the g eff values confirms that the heterogeneous interaction involves the orientation of molecular dipoles in the studied systems.  相似文献   

17.
The complexation reactions between alkali and alkaline-earth metal cations with DB18C6 were studied in acetonitrile-methanol (AN-MeOH) and tetrahydrofuran-threechloromethane (THF-CHCl3) binary mixtures at different temperatures using the conductometric method. The obtained results show that in most cases, the DB18C6 forms 1:1 complexes with these metal cations and the stability of the complexes is affected by the nature and composition of the mixed solvents. The stability order of complexes in AN-MeOH binary systems was found to be Na+ > Li+, and in the case of THF-CHCl3 binary mixtures was Na+ > Ba2+ > Li+. An anomalous and interesting behavior was observed for the case of complexation of a K+ ion with DB18C6 in the AN-MeOH binary mixture and also for complexation of Mg2+ and Ca2+ cations with this ligand in pure THF and also in THF-CHCl3 binary systems. The values of the thermodynamic parameters (ΔH c o and ΔS c o ) for complexation reactions obtained from the temperature dependence of the stability constants and the results show that the complexes are both enthalpy-and entropy-stabilized. The text was submitted by the authors in English.  相似文献   

18.
Refractive indexes (n D ) of numerous binary mixtures of 2-methoxyethanol + diethylamine, 2-methoxyethanol + triethylamine, and 2-methoxyethanol + propylamine, between 288.15 and 308.15?K, are reported. Furthermore, the excess molar refraction (R E ) and deviation from ideality refractive index (Δn D ) have been examined, in order to identify the presence of intermolecular complexes in these binary liquid mixtures.  相似文献   

19.
《Fluid Phase Equilibria》1999,155(2):261-276
The excess isentropic compressibilities, KsE for seven binary mixtures of methyl methacrylate+benzene, +o-xylene, +m-xylene, +p-xylene, +toluene, +ethylbenzene and +cyclohexane were estimated from the measured densities and speeds of sound at 298.15 and 308.15 K. The KsE values were large and positive for MMA+cyclohexane and +m-xylene, while they were negative for other mixtures. A qualitative analysis of KsE values was made in terms of molecular interactions. The speeds of sound of all the mixtures were also predicted from the free length theory (FLT) and collision factor theory (CFT).  相似文献   

20.
The excess molar volumes, V mE, viscosity deviations, Δη, and excess Gibbs energies of activation, ΔG *E, of viscous flow have been investigated from density and viscosity measurements for two ternary mixtures, 1-butanol + triethylamine + cyclohexane and 1-pentanol + triethylamine + cyclohexane, and corresponding binaries at 303.15 K and atmospheric pressure over the entire range of composition. The empirical equations due to Redlich-Kister, Kohler, Rastogi et al., Jacob-Fitzner, Tsao-Smith, Lark et al., Heric-Brewer, and Singh et al. have been employed to correlate V mE, Δη and ΔG *E of the ternary mixtures with their corresponding binary parameters. The results are discussed in terms of the molecular interactions between the components of the mixture. Further, the Extended Real Associated Solution, ERAS, model has been applied to V mE for the present binary and ternary mixtures, and the results are compared with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号