首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用原子力显微镜(AFM)对有机分子HTDIOO单层和多层LB膜结构进行了观察·实验结果表明,针尖与LB膜表面分子间的相互作用力会对成像的膜结构有影响.当悬臂针尖与LB膜表面分子的相互作用力较大时,针尖会扰动HTDIOO分子在单层LB膜中的有序排列.HTDIOO单层LB膜具有有序结构;而在多层LB膜中,HTDIOO分子则聚集在一起形成了一定的畴结构.  相似文献   

2.
《Supramolecular Science》1995,2(3-4):219-231
The phase behavior and morphology of segregated structures are considered for mixed Langmuir monolayers, which comprise a type of supramolecular polymer having a complex internal structure mixed with a long chain fatty acid. We fabricated two different series of mixed monolayers from a polyglutamate (PG) copolymer having 30% octadecyl ester side chains and 70% methyl ester side chains and fatty acids. These mixed monolayers deposited on a solid substrate were studied by pressure-area diagram measurements, X-ray analysis, and atomic force microscopy. Stearic acid (STA) and hexacosanoic acid (HCA) with alkyl chain lengths of 17 and 25 carbon atoms, respectively, were used as low molecular weight components. For the mixture PG:STA, where the length of the STA molecules is comparable to the length of the PG side chains, we observed the formation of partially miscible monolayers. These mixtures exhibit a nanometer scale domain morphology formed by the STA molecules dissolved in the outer shell of the PG monolayer. In contrast, for the PG:HCA mixture we observed a strong tendency for microphase separation and the formation of well-defined submicron segregated structures in the monolayers. Lateral compression of the mixed monolayers to a point close to the collapse pressure promotes microphase separation in both types of mixed monolayers with the formation of anisotropic surface morphology and oriented domains.  相似文献   

3.
有机HTDIOO分子LB膜结构的AFM研究   总被引:1,自引:0,他引:1  
利用原子力显微镜(AFM)对有机分子HTDIOO单层和多层LB膜结构进行了观察。实验结果表明,针尖与LB膜表面分子间的相互作用力会对成像的膜结构有影响。当悬臂针尖与LB膜表面分子的相互作用力较大时,针尖会扰动HTDIOO分子在单层LB膜中的有序排列。HTDIOO单层LB膜具有有序结构;而在多层LB膜中,HTDIOO分子则聚集在一起形成了一定的畴结构。  相似文献   

4.
A dipalmitoylphosphatic acid (DPPA) monolayer at the air/liquid interface is used as a binding layer to incorporate glucose oxidase (GOx) from the subphase. The effects of the adsorption time of GOx on the behavior of the mixed DPPA/GOx monolayer and the relevant structure of the mixed LB film were studied using the characteristics of the pressure-area (pi-A) isotherm, Brewster angle microscopy (BAM), and atomic force microscopy (AFM). The experimental results show that two equilibrium states of GOx adsorption exist in the presence of a DPPA monolayer. The first equilibrium stage occurs at tens of minutes after spreading of DPPA, and a surface pressure of ca. 7.5 mN/m is obtained. The second equilibrium stage approaches slowly, and a higher equilibrium surface pressure (ca. 16 mN/m) was obtained at ca. 8 h after the first stage. The BAM and AFM images show that, after the second equilibrium stage is reached, a more condensed phase and rough morphology are obtained on the mixed DPPA/GOx monolayer, indicating a higher amount of GOx incorporated into the mixed film. For the first equilibrium stage of GOx adsorption, DPPA molecules can still pack regularly and closely under compression, suggesting that GOx molecules are mainly located beneath the DPPA monolayer at the compressed state. A more uniform phase was detected on a film prepared after the first equilibrium stage was reached. The present result indicates that distinct structures and properties of mixed DPPA/GOx films can be prepared from the various stages of GOx adsorption.  相似文献   

5.
Monolayers of oligo(phenylene-ethynylene) (OPE) molecules have exhibited promise in molecular electronic test structures. This paper discusses films formed from a novel molecule within this class, 2-fluoro-4-phenylethynyl-1-[(4-acetylthio)phenylethynyl]benzene (F-OPE). The conditions of self-assembled monolayer (SAM) formation were systematically altered to fabricate reproducible high-quality molecular monolayers from the acetate-protected F-OPE molecule. Detailed characterization of the F-OPE monolayers was performed by using an array of surface probes, including reflection absorbance infrared spectroscopy (RAIRS), contact angle (CA) measurements, spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and atomic force microscopy (AFM). XPS and RAIRS established that the SAM formed without removal of the F substituent and without oxidation of the thiol. The monolayer thickness, determined from SE and AFM based nanolithography, was consistent with the formation of a densely packed monolayer. The valence electronic structure of the SAM was consistent with an aromatic structure shifted by the electron-withdrawing fluorine substituent and intermolecular coupling within an oriented array of molecules.  相似文献   

6.
The structural stability of alkenthiolate monolayers assembled on gold surfaces is a result of the well-defined organization of the individual molecules within the film. The formation of three-dimensional films assembled by stacking multiple molecular monolayers is substantially more challenging because the correct organization of the molecular components is required not only within the individual monolayers but also between the monolayers of the film. In this paper we examine the structure of multilayer films based on mercaptoalkanoic acid monolayers in which ligation between adjacent monolayers is achieved using the interaction of carboxylic acid and thiol groups with a divalent Cu ion. Using contact angle analysis and atomic force microscopy, we show that the use of Cu(2+) has profound implications on the properties and structure of the multilayer film. In particular, the divalent ions effectively prohibit the complete assembly of the next monolayer. For multilayer SAMs assembled from short alkane chains with six methylene groups, we find that molecules in the incomplete adlayer organize themselves randomly over the underlying monolayer. However, as the number of methylene groups increases (11 and 16 methylene groups), the upper layer tends to fracture into discrete islands which cover around 50% of the surface. The height of these islands is found to be equal to that expected for a complete, well-ordered monolayer assembled from the equivalent mercaptoalkanoic acid molecules. This relationship between chain length and island growth results from the migration of molecules into ordered aggregates driven by the reduction of free energy associated with maximizing intermolecular interactions.  相似文献   

7.
This paper reports the preparation and characterization of pure Langmuir and Langmuir-Blodgett (LB) films of a stilbene derivative containing two alkyl chains, namely 4-dioctadecylamino-4'-nitrostilbene. Mixed films incorporating docosanoic acid and the stilbene derivative are also studied. Brewster angle microscopy (BAM) analysis has revealed the existence of randomly oriented three-dimensional (3D) aggregates, spontaneously formed immediately after the spreading process of the stilbene derivative onto the water surface. These 3D aggregates coexist with a Langmuir film that shows the typical gas, liquid, and solid-like phases in the surface pressure and surface potential vs area per molecule isotherms, indicative of an average preferential orientation of the stilbene compound at the air-water interface, and a gradual molecular arrangement into a defined structure upon compression. A blue shift of 55 nm of the reflection spectrum of the Langmuir film with respect to the spectrum of a chloroform solution of the nitrostilbene indicates that two-dimensional (2D) H-aggregates are formed at the air-water interface. The monolayers are transferred undisturbed onto solid substrates with atomic force microscopy (AFM) revealing that the one layer LB films are constituted by a monolayer of the stilbene derivative together with some 3D aggregates. When the nitrostilbene compound is blended with docosanoic acid, the 3D aggregation is avoided in the Langmuir and Langmuir-Blodgett films, but does not limit the formation of 2D H-aggregates, desirable for second-order nonlinear optical response in the blue domain. The AFM images of the mixed LB films show that they are formed by a docosanoic acid monolayer and, on the top of it, a bilayer of the stilbene derivative.  相似文献   

8.
制备了对甲苯基硫脲、对氯苯基硫脲和2,4,6-三溴苯基硫脲在Au表面的自组装单分子膜(SAMs),用润湿角测量仪、椭圆偏振仪、X-射线光电子能谱仪(XPS)和原子力显微镜(AFM)对单分子膜进行了分析表征。结果表明取代苯基硫脲分子的S原子与Au形成Au-S键而诱导吸附分子形成取向排列的单分子膜。由于Au表面本身具有一定的缺陷和吸附的可逆性,使得所形成的单分子膜具有一定的缺陷。  相似文献   

9.
We investigated the detailed structure of a surface-grafted phospholipid monolayer, which was polymerized in situ onto a methacryloyl-silanized solid surface. By the combined study of X-ray reflectivity and atomic force microscopy, the in situ polymerization step of the lipid molecules are sufficiently detailed to reveal the molecular structure of lipid molecules before and after in situ polymerization. From the data of the X-ray reflectivity, we confirmed that the in situ polymerization process produces a flat lipid monolayer structure and that the lipid monolayer is substantially grafted on a silanized surface by chemical bonding. After the polymerization and washing processes, the thickness of the head group was 9 angstroms and the thickness of the tail group was 21 angstroms. The surface morphology of the polymerized phospholipid monolayer obtained by the measurements of atomic force microscopy was consistent with the results of the X-ray reflectivity. The cross-sectional analysis shows that the surface coverage of lipid molecules, which are chemically grafted onto a silanized surface, is approximately 89%.  相似文献   

10.
表面活性素是一类具有较强表面活性的微生物脂肽类化合物,能在空气/水界面形成不溶性单分子膜.利用Langmuir膜天平测定了表面活性素单分子膜的压缩-扩张循环曲线,发现单分子膜在经历了“平台区”后出现较大的迟滞环,迟滞环的形状与亚相pH有关.将“平台区”的单分子膜转移到云母表面后,用原子力显微镜(AFM)和扫描电子显微镜(SEM)均观察到高度达几十至数百纳米的表面聚集体,说明表面活性素在单分子膜的“平台区”伴随着自聚集.研究结果表明,表面活性素单分子膜在空气/水界面的迟滞现象是分子浸入亚相和形成三维表面聚集体共同作用的结果.  相似文献   

11.
Structural characteristics (structure, elasticity, topography, and film thickness) of dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) monolayers were determined at the air-water interface at 20 degrees C and pH values of 5, 7, and 9 by means of surface pressure (pi)-area (A) isotherms combined with Brewster angle microscopy (BAM) and atomic force microscopy (AFM). From the pi-A isotherms and the monolayer elasticity, we deduced that, during compression, DPPC monolayers present a structural polymorphism at the air-water interface, with the homogeneous liquid-expanded (LE) structure; the liquid-condensed structure (LC) showing film anisotropy and DPPC domains with heterogeneous structures; and, finally, a homogeneous structure when the close-packed film molecules were in the solid (S) structure at higher surface pressures. However, DOPC monolayers had a liquid-expanded (LE) structure under all experimental conditions, a consequence of weak molecular interactions because of the double bond of the hydrocarbon chain. DPPC and DOPC monolayer structures are practically the same at pH values of 5 and 7, but a more expanded structure in the monolayer with a lower elasticity was observed at pH 9. BAM and AFM images corroborate, at the microscopic and nanoscopic levels, respectively, the same structural polymorphism deduced from the pi-A isotherm for DPPC and the homogeneous structure for DOPC monolayers as a function of surface pressure and the aqueous-phase pH. The results also corroborate that the structural characteristics and topography of phospholipids (DPPC and DOPC) are highly dependent on the presence of a double bond in the hydrocarbon chain.  相似文献   

12.
It has recently been found that monodisperse surface micelles (hemimicelles) were formed in Langmuir monolayers of the semifluorinated alkane C8F17C16H33 (F8H16) after transfer onto silicon wafers. Grazing incidence X-ray diffraction studies have demonstrated that compression of mixed Langmuir monolayers made from combinations of dipalmitoyl phosphatidylethanolamine (DPPE) and diblock F8H16 in various molar ratios resulted in the complete expulsion of the diblock molecule at high surface pressure. F8H16 then formed a second layer on top of a DPPE-only monolayer, demonstrating a novel type of reversible, pressure-induced, vertical phase separation. Using atomic force microscopy and X-ray reflectivity, we show now that mixed DPPE/F8H16 (1:1.3) Langmuir-Blodgett films transferred onto silicon wafers below 10 mN m(-1) are laterally phase separated and consist of domains of F8H16 surface micelles in coexistence with a monolayer of DPPE. The density of the network of F8H16 surface micelles increases when the surface pressure of transfer increases. Around 10 mN m(-1), the F8H16 surface micelles start to glide on the DPPE monolayer, progressively overlying it, until total coverage is achieved.  相似文献   

13.
Mono- and multilayers of a novel amphiphilic hexapyridinium cation with six eicosyl chains (3) are spread at the air/water interface as well as on highly ordered pyrolytic graphite (HOPG). On water, the monolayer of 3 is investigated by recording surface pressure/area and surface potential/area isotherms, and by Brewster angle microscopy (BAM). Self-organized tubular micelles with an internal edge-on orientation of molecules form at the air/water interface at low surface pressure whereas multilayers are present at high surface pressure, after a phase transition. Packing motifs suggesting a tubular arrangement of the constituting molecules were gleaned from atomic force microscopy (AFM) investigations of Langmuir-Blodgett (LB) monolayers being transferred on HOPG at different surface pressures. These LB film structures are compared to the self-assembled monolayer (SAM) of 3 formed via adsorption from a supersaturated solution, which is studied by scanning tunnelling microscopy (STM). On HOPG the SAM of 3 consists of nanorods with a highly ordered edge-on packing of the aromatic rings and an arrangement of alkyl chains which resembles the packing of molecules at the air/water interface at low surface pressure. Additional details of the molecular packing were gleaned from single-crystal X-ray structure analysis of the hexapyridinium model compound 2b, which possesses methyl instead of eicosyl residues.  相似文献   

14.
The Langmuir films of two alkylated azacrown ethers at the air-water surface were characterized using surface pressure-area isotherms, ellipsometry, Brewster angle microscopy, and constant-area surface pressure relaxation. The azacrown ether molecules aggregate in the monolayer, which significantly stabilizes the film against dissolution. Mixed azacrown ether-palmitic acid monolayers were also characterized; results suggest that at high compression the two molecules interact repulsively. The influence of Cu(II) ions present in the aqueous subphase on the single components and mixed monolayer characteristics was also studied.  相似文献   

15.
The structure formation of wedge-shaped monodendrons based on symmetric benzenesulfonic acid with different lengths of peripheral alkyl chains was studied in Langmuir monolayers and Langmuir–Blodgett (LB) films. A phase transition from the liquid-expanded state to the liquid-condensed state was observed on compression of the Langmuir monolayers of the dendrons containing dodecyl lateral chains. The transition is accompanied by the formation of star-shaped aggregates visualized by Brewster angle microscopy. The three-layer LB transfer results in the reorganization of the monolayer into regions of bi-, tetra-, and hexalayers on a solid substrate with a low coverage of the surface. Homogeneous liquid-condensed mono layers are formed for the dendrons with hexa- and octadecyl chains, and the film thickness achieved by the LB transfer corresponds to the monolayer alignment of the molecules with the surface coverage up to 90%. It was determined that varying the alkyl length of wedge-shaped dendrones based on symmetric benzenesulfonic acid leads to a change in phase behavior of Langmuir monolayers as well as Langmuir–Blodgett films formed by them.  相似文献   

16.
The penetration of bovine serum albumin (BSA) into dipalmitoylphosphatidylglycerol (DPPG) monolayers was observed using atomic force microscopy (AFM) and surface pressure measurements. The effects of surface pressure, amount of BSA and the addition of ganglioside GM1 (GM1) were investigated. The surface pressure of the DPPG monolayer was increased by the penetration of BSA, and the increase in surface pressure was greater in the liquid-expanded film than that in the liquid-condensed film. The AFM images indicated that BSA penetrated into the DPPG monolayer. The amount of BSA that penetrated into the DPPG monolayer increased with time and with the amount of BSA added. On the contrary, the AFM image showed that BSA penetration into the mixed DPPG/GM1 (9 : 1) monolayer scarcely occurred. GM1 inhibited the penetration of BSA into the DPPG monolayer.  相似文献   

17.
We have formed the cholesterol monolayer and multilayer LB films on the self-assembled monolayers of 2-naphthalenethiol (2-NT) and thiophenol (TP) and studied the electrochemical barrier properties of these composite films using cyclic voltammetry and electrochemical impedance spectroscopy. We have also characterized the cholesterol monolayer film using grazing angle FTIR, scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Cholesterol has a long hydrophobic steroid chain, which makes it a suitable candidate to assemble on the hydrophobic surfaces. We find that the highly hydrophobic surface formed by the self-assembled monolayers (SAM) of 2-NT and TP act as effective platforms for the fabrication of cholesterol monolayer and multilayer films. The STM studies show that the cholesterol monolayer films on 2-NT form striped patterns with a separation of 1.0 nm between them. The area per cholesterol molecule is observed to be 0.64 nm2 with a tilt angle of about 28.96 degrees from the surface normal. The electrochemical studies show a large increase in charge transfer resistance and lowering of interfacial capacitance due to the formation of the LB film of cholesterol. We have compared the behavior of this system with that of cholesterol monolayer and multilayers formed on the self-assembled monolayer of thiophenol.  相似文献   

18.
The structure of self-assembled monolayers (SAMs) of undecylenic acid methyl ester (SAM-1) and undec-10-enoic acid 2-bromo-ethyl ester (SAM-2) grown on hydrogen-passivated Si(111) were studied by X-ray reflectivity (XRR), X-ray standing waves (XSW), X-ray fluorescence (XRF), atomic force microscopy, and X-ray photoelectron spectroscopy (XPS). The two different SAMs were grown by immersion of H-Si(111) substrates into the two different concentrated esters. UV irradiation during immersion was used to create Si dangling bond sites that act as initiators of the surface free-radical addition process that leads to film growth. The XRR structural analysis reveals that the molecules of SAM-1 and SAM-2 respectively have area densities corresponding to 50% and 57% of the density of Si(111) surface dangling bonds and produce films with less than 4 angstroms root-mean-square roughness that have layer thicknesses of 12.2 and 13.2 angstroms. Considering the molecular lengths, these thicknesses correspond to a 38 degrees and 23 degrees tilt angle for the respective molecules. For SAM-2/Si(111) samples, XRF analysis reveals a 0.58 monolayer (ML) Br total coverage. Single-crystal Bragg diffraction XSW analysis reveals (unexpectedly) that 0.48 ML of these Br atoms are at a Si(111) lattice position height that is identical to the T1 site that was previously found by XSW analysis for Br adsorbed onto Si(111) from a methanol solution and from ultrahigh vacuum. From the combined XPS, XRR, XRF, and XSW evidence, it is concluded that Br abstraction by reactive surface dangling bonds competes with olefin addition to the surface.  相似文献   

19.
We show that two dips of an oxidized silicon substrate through a prepolymerized n-octadecylsiloxane monolayer at an air-water interface in a rapid succession produces periodic, linear striped patterns in film morphology extending over macroscopic area of the substrate surface. Langmuir monolayers of n-octadecyltrimethoxysilane were prepared at the surface of an acidic subphase (pH 2) maintained at room temperature (22 +/- 2 degrees C) under relative humidities of 50-70%. The substrate was first withdrawn at a high dipping rate from the quiescent aqueous subphase (upstroke) maintained at several surface pressures corresponding to a condensed monolayer state and lowered soon after at the same rate into the monolayer covered subphase (downstroke). The film structure and morphology were characterized using a combination of optical microscopy, imaging ellipsometry, and Fourier transform infrared spectroscopy. An extended striped pattern, perpendicular to the pushing direction of the second stroke, resulted for all surface pressures when the dipping rate exceeded a threshold value of 40 mm min(-1). Below this threshold value, uniform deposition characterizing formation of a bimolecular film was obtained. Under conditions that favored striped deposition during the downstroke through the monolayer-covered interface, we observed a periodic auto-oscillatory behavior of the meniscus. The stripes appear to be formed by a highly correlated reorganization and/or exchange of the first monolayer, mediated by the Langmuir monolayer at the air-water interface. This mechanism appears distinctly different from nanometer scale stripes observed recently in single transfers of phospholipid monolayers maintained near a phase boundary. The stripes further exhibit wettability patterns useful for spatially selective functionalization, as demonstrated by directed adsorptions of an organic dye (fluorescein) and an oil (hexadecane).  相似文献   

20.
The formation and molecular structure of self-assembled monolayers (SAMs) of anthracene-2-thiol (AnT) on Au(111) have been characterized by reflection adsorption infrared spectroscopy, thermal desorption spectroscopy, X-ray photoelectron spectroscopy, near-edge X-ray absorption spectroscopy, scanning tunneling microscopy, and low energy electron diffraction. It is demonstrated that highly ordered monolayer films are formed upon immersion, but their quality depends critically on the choice of solvents and rinsing conditions. The saturated monolayer is characterized by a closed packed arrangement of upright standing molecules forming a (2 x 4)rect unit cell. At about 450 K a partial desorption takes place and the remaining molecules form a dilute (4 x 2)-phase with an almost planar adsorption geometry, while further heating above 520 K causes a thermally induced fragmentation. According to their different densities both phases reveal very diverse chemical reactivities. Whereas the saturated monolayer is stable and inert under ambient conditions, the dilute phase does not warrant any protection of the sulfur headgroups which oxidize rapidly in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号