首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous formation of hydrofluoric acid (HF) in the radiation-induced polymerization of tetrafluoroethylene (TFE) was investigated. HF concentration in PTFE latex was determined mainly by conductometric titration with 0.01 and 0.001N NaOH. The amount of HF formed is almost independent of agitation speed and the amount of n-hexadecane added and is maximal at ca. 70°C corresponding to the rate of polymerization. The rate of HF formation increases with the initial pressure of TFE monomer and dose rate and decreases with polymerization or TFE consumption. This fact suggests that HF is formed mainly by TFE reactions and not by the degradation of PTFE. The mechanism of HF formation in this reaction system in the absence of oxygen is shown in the following two schemes: scheme I is the reaction of TFE with primary radicals (OH·, H·, e) from the radiolysis of water; scheme II is the reaction of water with the species from the radiolysis of TFE. On the assumption that HF is formed only according to scheme I, the G value of HF formation G(HF)calc can be calculated as 11.25. All observed G values G(HF)obs are larger than G(HF)calc. When the polymerization is carried out at 20 kg/cm2 under various dose rates, G(HF)obs increases with the dose rate. When the polymerization is carried out at 3.0 × 104 rad/hr under various pressures, G(HF)obs decreases with the decrease in pressure from 20 to 2 kg/cm2 and is fairly close to G(HG)calc at 2 kg/cm2. This indicates that HF formation is due mainly to scheme II at high pressure (in the presence of enough TFE) and to scheme I as the pressure is lowered.  相似文献   

2.
The formation and growth of monodisperse polystyrene latex particles in the absence of added surfactant has been studied by sampling polymerization reactions at different times and determining the surface and bulk properties of the latex. A large number of nuclei in excess of 5 × 1012/ml were generated during the first minute of reaction, but this fell due to coagulation until a constant number (1011?1012/ml) was reached. The rate of polymerization per particle was then found to be proportional to the particle radius. Gel-permeation chromatography has shown that the initial particles consist mainly of material of MW 1000 with a small amount of polymer up to MW 106, and the presence of this low molecular weight polymer, which in many cases can still be detected after 100% conversion, is taken as being indicative of particle formation via a micellization-type mechanism involving short-chain (MW 500) free-radical oligomers. M?n values determined for the latex particles throughout the course of reactions show that the molecular weight increases to a maximum of about 105 as the particles grow. The presence of anomalous regions within the particles has been confirmed by transmission electron microscopy, scanning electron microscopy, and gas adsorption studies. It has also been found possible to re-expose these regions within apparently homogeneous particles by stirring with styrene monomer; this is indicative of a molecular weight heterogeneity within the latex particles. The presence of sulfate, carboxyl, and hydroxyl groups upon the latex particle surfaces has been determined by conductometric titration.  相似文献   

3.
A series of carboxylated acrylate copolymer latexes were prepared via two different emulsion polymerization technologies with different carboxylic‐group distribution and morphologies. The effects of the emulsifier, the initiator, and the carboxylic monomers [acrylic acid (AA) or monobutyl itaconate (MBI)] on the total conversion of the monomers and the properties of acrylate latexes and films have been investigated. The distribution of carboxylic groups (?COOH) measured by conductometric titration shows that the concentration of surface –COOH (Cs) and embedded –COOH (Cb) both increase with the increase of the amount of carboxylic monomers. For the latexes containing AA, –COOH tends to distribute on the surface of latex particles and in the aqueous phase, whereas –COOH tends to concentrate inside the core of latex particles for the latexes containing MBI. Transmission electron microscopy demonstrates that the latex particles are regular with narrow size distribution and have significant differences in morphologies when different carboxylic monomers and polymerization technologies were used. The stability of latex is satisfactory through the results of common stability and zeta potential tests. Moreover, the water absorption and contact angle experiment tests also revealed that the water resistance of the latex films is good. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This study developed a phenanthroline method for quantitative determination of surface carboxyl groups on carboxylated polystyrene (PS‐COOH) particles based on the coordination between the carboxyl groups and Fe2+. The ratio of the carboxyl groups, which is determined by conductometric titration method, to Fe2+ coordinated with the particles, which is determined by phenanthroline method, is 4.7, i.e. nCOOH = 4.7 × ΔnFe2+. The Lambert–Beer law is obeyed in the range of 0–60 × 10?9 mol/ml for the amount of surface carboxyl on the particles. The detection limit of the method is 2 nmol COOH/ml. The average standard deviation of the experiments is 4.4%. The relative deviation of the data obtained with this method is lower than 7% compared with that obtained with the conductometric titration method. The weight of the sample necessary for phenanthroline method is only about 0.1% of that necessary for conductometric titration method. It has been demonstrated that the phenanthroline method is suitable for quantitative determination of low amount of surface carboxyl groups on PS‐COOH particles due to its high sensitivity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
MAA存在下VAc/BA核壳乳液聚合过程中的胶粒形态研究   总被引:1,自引:0,他引:1  
用TEM和电位滴定法对不同配方和工艺条件得到的胶粒形态结构和羧基分别进行了表征。结果表明:加入甲基丙烯酸有利于胶粒的稳定和形成规则的核壳胶粒。半连续加料不会形成完全反转的核壳结构,但是,核层在反应过程中由于聚合物簇的迁移会造成形变。由于胶粒中聚合物浓度高,粘度大,因而胶粒形态变化受动力学影响甚大,羧基分布主要是由动力学确定的。  相似文献   

6.
本文主要叙述用电导滴定法对羧化微球表面的羧基含量进行了测定,以便了解其表面特性与IgG吸附的关系,进而获得满意的微球产品。  相似文献   

7.
The effect of the polymerizable surfactant, sodium dodecyl allyl sulfosuccinate (JS-2), on the stability of polybutyl acrylate latex particles during semibatch emulsion polymerization was investigated in this work. Experimental data show that the ionic strength is the most important parameter in determining the latex stability during the reaction. Both the amount of coagulum produced by intensive coagulation and percentage of the particle volume change (ΔV) caused by limited flocculation increase with increasing electrolyte concentration. The parameter Δ V increases significantly when the concentration of JS-2 in the initial reactor charge ([JS-2]i) increases. The amount of coagulum increases rapidly when the agitation speed is increased from 400 to 800 rpm. Experiments of coagulation kinetics were carried out to study the stability of latex products toward added salts. The experimental data show that the chemical stability of the latex product increases with increasing pH. Furthermore, the critical coagulation concentration and diffuse potential increase with increasing [JS-2]i. It is postulated that the increasing electrostatic attraction force between two approaching particles due to the increased [JS-2] i can increase the apparent magnitude of Hamaker constant.  相似文献   

8.
Two polymerizable surfactants (surfmers), namely, monododecyl itaconate (MDDI) and monocetyl itaconate (MCI), were synthesized by reacting itaconic anhydride with 1‐dodecanol and cetyl alcohol, respectively. A series of uncrosslinked and crosslinked surface‐carboxylated latexes were prepared from styrene and styrene–divinylbenzene, respectively, using varying amounts of these two surfmers. The latexes were characterized by gravimetry, dynamic light scattering, and conductometric titration in order to obtain the conversion, particle size distribution, and concentration of surface carboxyl groups, respectively. The size of latex varied between 41–72 nm and was seen to depend inversely on the surfmer concentration. In the case of the soluble polystyrene latexes, solution 1H NMR spectra provided conclusive evidence for surfmer incorporation into the polymer chain. Comparison of the incorporation levels determined by NMR with the surface carboxylic acid concentrations in the latexes, determined by conductometric titrations, revealed that the majority of the surfmers, as ancticipated, were present on the latex surface. The study of the stability of the latexes to varying salt concentrations clearly demonstrated that the smaller‐size latexes having higher surface carboxyl group density exhibited far improved stability when compared with the larger‐size ones having lower surface carboxyl group density. Similarly, enhanced freeze‐thaw stability was also observed for the smaller‐size latexes. MCI‐based latexes exhibited marginally improved stability compared with those prepared using MDDI, which again seems to be because of the higher surface functional group density in the former. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3257–3267, 2005  相似文献   

9.
The organic nano-TiO2 was synthesized in reverse (W/O) microemulsion, using tetrabutyl titanate (TBOT) as precursor and γ-methacryloxypropyl trimethoxy silane (KH-570) as modifier. After phase inversion from W/O microemulsion to oil-in-water (O/W) emulsion, nano-TiO2/poly(methyl methacrylate) hybrid latex was prepared via in-situ polymerization based on the O/W emulsion containing organic nano-TiO2. Fourier transform infrared spectroscopy (FTIR) indicated that KH-570 was successfully grafted onto the surface of TiO2 particles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) demonstrated that the average diameter of nano-TiO2 was about 10 nm and the hybrid latex had obvious core-shell structure with particle size of 155 nm. The TBOT content and the mass ratio of KH-570 to TOBT have important effect on the polymerization stability and storage stability of the hybrid latex. When the TBOT content was 5% and the mass ratio of KH-570 to TOBT was 0.6, the coagulation rate (Cr) was 3.0% and the zeta potential reached 36.1 mV. The possible formation mechanism of the hybrid latex was also proposed.  相似文献   

10.
The radiation-induced emulsifier-free emulsion polymerization of tetrafluoroethylene was carried out at an initial pressure of 2–25 kg/cm2, temperature of 30–110°C, and under a dose rate of 0.57 × 104?3.0 × 104 rad/hr. The rate of polymerization was shown to be proportional to 1.0 and 1.3 powers of the dose rate and initial pressure, respectively, and is maximal at about 70°C. The molecular weight of polytetrafluoroethylene (PTFE) lies in the range of 105?106, increases with reaction time in the early stage of polymerization, and is maximal at 70°C but is almost independent of the dose rate. An interesting discovery is that PTFE, a hydrophobic polymer, forms as a stable latex in the absence of emulsifier. When PTFE latex coagulates during polymerization under certain conditions, the polymerization rate decreases, probably because polymerization proceeds mainly on the polymer particle surface. The observed rate acceleration and successive increase in polymer molecular weight may be due to slow termination of propagating radicals in the rigid PTFE particles.  相似文献   

11.
We developed a novel fluorescence labeling technique for quantification of surface densities of atom transfer radical polymerization (ATRP) initiators on polymer particles. The cationic P(St‐CPEM‐C4DMAEMA) and anionic P(St‐CPEM) polymer latex particles carrying ATRP‐initiating chlorine groups were prepared by emulsifier‐free emulsion polymerization of styrene (St), 2‐(2‐chloropropionyloxy)ethyl methacrylate (CPEM), and N‐n‐butyl‐N,N‐dimethyl‐N‐(2‐methacryloyloxy)ethylammonium bromide (C4DMAEMA). ATRP initiators on the surface of polymer particles were converted into azide groups by sodium azide, followed by fluorescent labeling with 5‐(N,N‐dimethylamino)‐N′‐(prop‐2‐yn‐1‐yl)naphthalene‐1‐sulfonamide (Dansyl‐alkyne) by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). The reaction time required for both azidation of ATRP‐initiating groups and successive fluorescence labeling of azide groups with Dansyl‐alkyne by CuAAC were investigated in detail by FTIR and fluorescence spectral measurement, respectively. The ATRP initiator densities on the cationic P(St‐CPEM‐C4DMAEMA) and anionic P(St‐CPEM) particle surfaces were estimated to be 0.21 and 0.15 molecules nm?2, respectively, which gave close agreement with values previously determined by a conductometric titration method. The fluorescence labeling through click chemistry proposed herein is a versatile technique to quantify the surface ATRP initiator density both on anionic and cationic polymer particles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4042–4051  相似文献   

12.
Particles with various morphologies were fabricated by changing the size of carboxyl-containing core particles and performing seeded emulsion polymerization as well as alkali posttreatment. The distribution of carboxyl groups, size, and morphology of the resultant particles were characterized with conductometric titration, dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Results indicated that the size of carboxyl-containing core latex particles could be varied from 95 to 240 nm by adjusting the concentration of sodium dodecyl sulfate (SDS). The percentage of carboxyl groups buried inside particles increased clearly along with the encapsulation of core by interlayer and shell polymers, and seeded emulsion copolymerization performed smoothly except the system using core particles with size less than 99 nm. After alkali posttreatment, the morphologies of corresponding particles showed porous, hollow, and bowl-like structure, respectively. Moreover, the relationship between core particle size and alkali-treated particle morphology was elucidated briefly.  相似文献   

13.
Hemiesters and hemiamides of maleic acid with different chain lengths of the hydrophobic alkyl group (R = C8H17, C10H21, C12H25, C16H33) have been synthesized and used as surfactants in the emulsion polymerization of styrene and butyl acrylate. The same polymerization experiments were also carried out using nonreactive surfactants with an analogous succinic structure. The chemical structure of the surfactants was confirmed by 1H nuclear magnetic resonance. The melting point and critical micelle concentration of the reactive surfactants described herein were measured. All of the surfactants studied provided good stability of styrene/butyl acrylate latexes, when compared with a reference latex of a styrene/butyl acrylate copolymer prepared with a surfactant sodium dodecyl sulfate. The amount of surfactant grafted onto the particles of the final latex was estimated by conductimetric titration. Between 33 and 68% of surfactant used in emulsion polymerization was found on the surface of latex particles. Electrolyte addition at high concentration and freeze/thaw cycle cause flocculation of latexes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
The stability against electrolytes for all-sulfate, all-carboxyl, and all-hydroxyl, polystyrene model latexes followed the order, sulfate > carboxyl > hydroxyl when determined from an IR light scattering technique. Two types of hydroxyl endgroups were identified by 13C-NMR (chemical shift correlations, and model compound comparisons), for the polystyrene model latexes. One type was due to termination of growing chain with an oligomer with a single monomer unit, and the other due to termination of growing chains. The surface hydroxyl groups of an all-hydroxyl latex were derivatized with hexafluoroacetone, and quantified using 19F-NMR techniques. Good agreement with the indirect conductometric titration values were obtained.  相似文献   

15.
The size, distribution, and number of PTFE particles formed by radiation-induced emulsifier-free polymerization were measured by electron microscope and automatic particle analyzer (centrifugation method). From the electron micrographs we found that the particles are formed within 5 min. The change in the number of polymer particles (np) with reaction time (t) depends on the relative concentration of growing polymer chains to stabilizing species produced by the radiolysis of water and monomer; that is, it was governed by TFE pressure/dose rate ratio and classified into three cases: case I, dnp/dt = 0 (e.g., at 3 × 104 rad/hr and 20 kg/cm2); case II, dnp/dt < 0 (e.g., at dose rate below 1.9 × 104 rad/hr and 20 kg/cm2); case III, dnp/dt > 0 (e.g., at 3 × 104 rad/hr and 2 kg/cm2). The polymer molecular weight above 106 is almost independent of the particle size. The polymerization loci are mainly on the surface of polymer particles dispersed in the aqueous phase in cases I and II except in the initial stage. In case III new particles are formed successively during polymerization. Therefore the polymerization loci are mainly in the aqueous phase. Especially in case I, we concluded that after the generation of particles the propagation proceeds mainly on the surface of polymer particles like the core shell model proposed by Granico and Williams.  相似文献   

16.
In order to obtain functional polymer latex particles with clean surface and with surface carboxyl groups, P(MMA-EA) seed particles with the diameter of 335 nm were first synthesized via soap-free batch emulsion polymerization of methyl methacrylate (MMA) and ethyl acrylate (EA), and then the seeded emulsion copolymerization of MMA, EA and MAA (methacrylic acid) onto the seed particles were performed in the absence of emulsifier. Influences of ingredients and conditions on polymerization, latex particle size (Dp) and its distribution were investigated. Results showed that most of the monomers polymerized onto the seed latex particles in the second step of polymerization by using drop-wise addition method, and Dp increased from 483 nm to 829 nm with the mass ratio of core/shell monomers [C]/[S] decreased from 1:2 to 1:15. It was found that Dp decreased with the increase of MAA and initiator amounts, and the size of the latex particles became uniform with the decrease of MAA amount and with the increase of [C]/[S] value.  相似文献   

17.
Monodisperse polymer colloids with dimethyl and diethyl acetal functionalities were synthesized by a two‐step emulsion polymerization process. The first step consisted of a batch emulsion homopolymerization of styrene (St). The dimethyl and diethyl acetal functionalities were obtained by batch emulsion terpolymerization of St, methacrylic acid (MAA), and methacrylamidoacetaldehyde dimethyl acetal (MAAMA) or methacrylamidoacetaldehyde diethyl acetal (MAADA) in the second step, onto the previously formed polystyrene latex particles. The latexes were characterized by TEM and conductimetric titration, in order to obtain the particle size distribution and the amount of carboxyl and acetal groups on the surface, respectively. The chemical stability of the functionalized surface groups during the storage time was analyzed. The hydrophilic character of the surface of the polymer particles was determined by means of nonionic emulsifier titration. The colloidal stability of the synthesized latexes was studied by measuring the critical coagulation concentration (CCC) against KBr electrolyte, and the existence of a hairy layer on the surface of the latex particles was analyzed by measuring the hydrodynamic particle diameter at several electrolyte concentrations. The surface functionalized groups remained stable for 2 years. The relative hydrophilic character and the colloidal stability were affected by the pH of the medium. On the other hand, the higher the surface charge, the larger the thickness of the hairy layer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 501–511, 1999  相似文献   

18.
本文用辐射法引发丙烯酸2-乙基己酯/丙烯酸(EHA/AA)乳液共聚合,用酸碱反滴定法研究了剂量率、剂量、乳化剂浓度、固含量、共聚物分子量、丙烯酸浓度、丙烯酸加料方式及丙烯酸预先中和程度等反应条件对乳胶中羧酸可滴定百分比的影响。并对聚合机理作了初步探讨。  相似文献   

19.
In this work, an iron oxide (Fe3O4)/polystyrene (PS)/poly(N‐isopropylacryl amide‐co‐methacrylic acid) [P(NIPAAM–MAA)] thermosensitive magnetic composite latex was synthesized by the method of two‐stage emulsion polymerization. The Fe3O4 particles were prepared by a traditional coprecipitation method and then surface‐treated with either a PAA oligomer or lauric acid to form a stable ferrofluid. The first stage for the synthesis of the thermosensitive magnetic composite latex was to synthesize PS in the presence of a ferrofluid by emulsion polymerization to form Fe3O4/PS composite latex particles. Following the first stage of reaction, the second stage of polymerization was carried out with N‐isopropylacryl amide and methacrylic acid as monomers and with Fe3O4/PS latex as seeds. The Fe3O4/PS/[P(NIPAAM–MAA)] thermosensitive magnetic particles were thus obtained. The effects of the ferrofluids on the reaction kinetics, morphology, and particle size of the latex were discussed. A reaction mechanism was proposed in accordance with the morphology observation of the latex particles. The thermosensitive property of the thermosensitive magnetic composite latex was also studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3062–3072, 2007  相似文献   

20.
Polystyrene nanoparticles with grafted chains of an amino functionalized polymer were prepared by a two-step polymerization process. In the first step, the polystyrene seed particles were synthesized by the conventional batch emulsion polymerization using terpolymer HAS (hydroperoxide monomer, acrylic acid, and styrene) as a surface-active initiator. The surface of the obtained particles contains carboxyl groups, which are responsible for the latex stability, and residual undecomposed hydroperoxide groups. Therefore, in the second step, an amino functional monomer was grafted onto the hydroperoxide modified polystyrene particles by a "grafting from" approach. X-ray photoelectron spectroscopy, NMR, and scanning electron microscopy were used to examine the surface of the amino functionalized particles. The amount of incorporated amino groups onto the particles was determined by fluorescenometric titration. In general, the number of amino groups on the particle surface increased with the increase of the functional monomer content in the reaction mixture. The incorporation of the functional monomer was also confirmed by electrophoretic measurements. Final particles possess amphoteric character due to the presence of amino and carboxyl groups on the surface. Adsorption of human immunoglobulins G onto the amino functionalized particles was studied as a function of pH and ionic strength. The covalent binding of human IgG was performed using the glutaraldehyde preactivation method. The immunoreactivity of the latex-IgG complex was examined by the latex agglutination test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号