首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ester group: how hydrofluoroalkane-philic is it?   总被引:1,自引:0,他引:1  
Pressurized metered-dose inhalers (pMDIs) have been recognized as potential devices for the delivery of systemically acting drugs, including biomolecules, to and through the lungs. Therefore, the development of novel excipients capable of imparting stability to suspension formulations in hydrofluoroalkane (HFA) propellants is of great relevance because many of the drugs of interest are poorly soluble in HFAs. In this work, we use ab initio calculations and chemical force microscopy (CFM) to determine the HFA-philicity of the biodegradable and biocompatible ester moiety quantitatively. The complementary information obtained from the binding energy calculations and adhesion force measurements are used to gain microscopic insight into the relationship between the chemistry of the moiety of interest and its solvation in HFA. A lactide (LA)-based copolymer surfactant was synthesized and characterized, and its ability to stabilize a dispersion of micronized budesonide in HFA227 was demonstrated. These results corroborate the ab initio calculations and CFM and show that the LA-based moiety is a suitable candidate for enhancing the stability of dispersions in HFA-based pMDIs.  相似文献   

2.
In situ high-pressure tensiometry and ab initio calculations were used to rationally design surfactants for the 1,1,1,2-tetrafluoroethane-water (HFA134a|W) interface. Nonbonded pair interaction (binding) energies (E(b)) of the complexes between HFA134a and candidate surfactant tails were used to quantify the HFA-philicity of selected moieties. The interaction between HFA134a and an ether-based tail was shown to be predominantly electrostatic in nature and much more favorable than that between HFA134a and a methyl-based fragment. The interfacial activity of (i) amphiphiles typically found in FDA-approved pressurized metered-dose inhaler (pMDI) formulations, (ii) a series of nonionic surfactants with methylene-based tails, and (iii) a series of nonionic surfactants with ether-based tails was investigated at the HFA134a|W interface using in situ tensiometry. This is the first time that the tension of the surfactant-modified HFA134a|W interface has been reported in the literature. The ether-based surfactants were shown to be very interfacially active, with tension decreasing by as much as 27 mN.m(-)(1). However, the methyl-based surfactants, including those from FDA-approved formulations, did not exhibit high activity at the HFA134a|W interface. These results are in direct agreement with the E(b) calculations. Significant differences in interfacial activity are noted for surfactants at the 2H,3H-perfluoropentane (HPFP)|water and HFA134a|W interfaces. Care should be taken, therefore, when results from the mimicking solvent (HPFP) are extrapolated to HFA134a-based systems. The results shown here are of relevance in the selection of surfactants capable of forming and stabilizing reverse aqueous aggregates in HFA-based pMDIs, which are promising formulations for the systemic delivery of biomolecules to and through the lungs.  相似文献   

3.
Understanding solvation in hydrofluoroalkane (HFA) propellants is of great importance for the development of novel pressurized metered-dose inhaler (pMDI) formulations. HFA-based pMDIs are not only the most widely used inhalation therapy devices for delivering small drug molecules to the respiratory tract, but they also hold promise as vehicles for the delivery of therapeutic biomolecules to and through the lungs. In this work we use binding energy calculations to determine the degree of interaction between HFA propellants and candidate HFA-philes, including a methyl-based tail (isohexane, ISO), and fragments of poly(ethylene oxide) (EO), poly(propylene oxide) (PO), and poly(lactide) (LA). The distinct nature of solvation forces of the two HFA propellants approved by the FDA for use in pMDIs, 1,1,1,2-tetrafluoroethane (HFA134a) and 1,1,1,2,3,3,3-heptafluoropropane (HFA227), is also studied. Binding energy (Ebst) calculations demonstrated that an increase in tail polarity through the addition of oxygen atoms in the fragment backbone provides for sites capable of interacting with the HFA propellant molecules, thus enhancing the stabilization energy of the complexes. The interaction energy between HFA227 and LA (EbHFA227-LA = -24.7 kJ.mol(-1)) is significantly more favorable than that between HFA227 and its hydrocarbon analog (EbHFA227-ISO = -10.0 kJ.mol(-1)). However, it was shown that not only the fragment polarity is of relevance in stabilizing the complexes. The accessibility of the oxygen atoms in the fragments of interest is also relevant. Cluster studies indicate that although both oxygen atoms in the LA fragment are available to form H-bonds with the propellant molecules, the ether oxygen in PO is accessible to only one propellant molecule, thus decreasing significantly the stabilization energy of the cluster. The results shown here serve as a guide for the design of novel HFA-philes for HFA-based pMDIs.  相似文献   

4.
The F(2)+CH(3)SCH(3) reaction was studied with crossed molecular beam techniques and high level ab initio calculations. Significant reactivity was observed even at low collision energies, consistent with the negligible barrier height obtained from the ab initio calculations. All experimental findings are consistent with a weakly bound reaction intermediate of F-F-S(CH(3))(2) structure, which possesses a special type of three-center four-electron bonding. Analogous intermediates can also explain the reactions of F(2) with CH(3)SH and CH(3)SSCH(3).  相似文献   

5.
An ab initio interpolated potential energy surface (PES) for the F + CH4 reactive system has been constructed using the interpolation method of Collins and co-workers. The ab initio calculations have been performed using second-order M?ller-Plesset (MP2) perturbation theory to build the initial PES. Scaling all correlation (SAC) methodology has been employed to improve the ab initio calculations and to construct a dual-level PES. Using this PES, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations and internal energy distributions has been carried out for the F + CH4 and F + CD4 reactions and the theoretical results have been compared with the available experimental data.  相似文献   

6.
An ab initio study of the role of electronic curve crossing in the photodissociation dynamics of the alkyl halides is presented. Recent experimental studies show that curve crossing plays a deterministic role in deciding the channel of dissociation. Coupled repulsive potential energy curves of the low-lying n-sigma(*) states are studied including spin-orbit and relativistic effects. Basis set including effect of core correlation is used. Ab initio vertical excitation spectra of CH(3)I and CF(3)I are in agreement with the experimental observation. The curve crossing region is around 2.371 A for CH(3)I and CF(3)I. The potential curves of the repulsive excited states have larger slope for CF(3)I, suggesting a higher velocity and decreased intersystem crossing probability on fluorination. We also report the potential curves and the region of curve crossing for CH(3)Br and CH(3)Cl.  相似文献   

7.
We present pair potentials for fluorinated methanes and their dimers with CO(2) based on ab initio potential energy surfaces. These potentials reproduce the experimental second virial coefficients of the pure fluorinated methanes and their mixtures with CO(2) without adjustment. Ab initio calculations on trimers are used to model the effects of nonadditive dispersion and induction. Simulations using these potentials reproduce the experimental phase-coexistence properties of CH(3)F within 10% over a wide range of temperatures. The phase coexistence curve of the mixture of CH(2)F(2) and CO(2) is reproduced with an error in the mole fractions of both phases of less than 0.1. The potentials described here are based entirely on ab initio calculations, with no empirical fits to improve the agreement with experiment.  相似文献   

8.
Measurements of hyper-Rayleigh scattering intensities and polarization ratios are presented for nine small molecules in the gas phase [CH(4), CF(4), CCl(4), N(2)O, NH(3), D(2)O, SO(2), CF(2)Cl(2), and (CH(3))(2)CO]. In four cases [CH(4), CF(4), CCl(4), and N(2)O] all molecular hyperpolarizability tensor components can be determined from the measurements. The results of this experiment are compared with the results of previous ab initio calculations, finding discrepancies up to 60%. Including vibrational contributions decreases the discrepancies for CH(4) and CF(4) and increases them for CCl(4), D(2)O, and NH(3).  相似文献   

9.
The rotational spectrum of chlorofluoroiodomethane (CHClFI) has been investigated. Because its rotational spectrum is extremely crowded, extensive ab initio calculations were first performed in order to predict the molecular parameters. The low J transitions were measured using a pulsed-molecular-beam Fourier transform spectrometer, and the millimeter-wave spectrum was measured to determine accurate centrifugal distortion constants. Because of the high resolution of the experimental techniques, the analysis yielded accurate rotational constants, centrifugal distortion corrections, and the complete quadrupole coupling tensors for the iodine and chlorine nuclei, as well as the contribution of iodine to the spin-rotation interaction. These molecular parameters were determined for the two isotopologs CH35ClFI and CH37ClFI. They reproduce the observed transitions within the experimental accuracy. Moreover, the ab initio calculations have provided a precise equilibrium molecular structure. Furthermore, the ab initio molecular parameters are found in good agreement with the corresponding experimental values.  相似文献   

10.
Together with ionization potentials, cross sections provide valuable information for the interpretation of photoelectron spectra. We have developed a program to perform ab initio calculations of photoionization cross sections within the electric dipole approximation using electron propagator theory. Applications to the first-row hydrides CH(4), NH(3), H(2)O, and HF, using several approximations for the propagator self-energy and the plane-wave and orthogonalized-plane-wave approximations to represent the photoelectron, as well as comparison to experimental data, are presented. This program is implemented within the quantum chemistry package GAUSSIAN.  相似文献   

11.
FTIR smog chamber techniques and ab initio calculations have been used to investigate the kinetics and mechanism of the reaction of Cl atoms with i-propanol in 700 Torr of N(2) at 296 K. The reaction is observed to proceed with a rate constant of k(1) = (8.28 +/- 0.97) x 10(-11) cm(3) molecule(-1) s(-1) and gives CH(3)C(OH)CH(3) and CH(3)CH(OH)CH(2) radicals in yields of 85 +/- 7 and 15 +/- 7%, respectively. Calculations indicate that abstraction of the secondary H can proceed through a lower energy pathway than the primary. Rapid decomposition of the chlorination product CH(3)CCl(OH)CH(3) complicates its direct detection, likely due to heterogeneous chemistry. IR spectra for the chlorides CH(3)CCl(OH)CH(3) and CH(3)CH(OH)CH(2)Cl were inferred experimentally and assignments confirmed via comparison with ab initio computed spectra.  相似文献   

12.
All spin-spin coupling tensors J of the fluoromethanes CH3F, CH2F2, and CHF3 are obtained theoretically by multiconfiguration self-consistent field linear response (MCSCF LR) ab initio calculations. Furthermore the principal values and the orientation of the principal axis systems of each theoretical J tensor are specified. Experimental liquid crystal NMR (LC NMR) data on the tensorial properties of the CF spin spin coupling in CH3F and CH2F2, and the FF spin-spin coupling in CHF3 are also reported. In the analysis of the experiments, the contributions from molecular vibrations, as well as that of the correlation of vibrational and rotational motion to the experimental anisotropic couplings, D(exp), are taken into account. The information of the anisotropic indirect coupling, 1/2J(aniso), is detected as the difference between D(exp) and the calculated dipolar coupling, D(calc). The extracted indirect contributions, 1/2J(aniso), are in fair agreement with the ab initio results. All relative (experimental and theoretical) CF and FF indirect contributions, 1/2J(aniso)/D(exp), are negative and under 1.7% in magnitude, when the observed molecular orientations are used. Therefore, in the one bond CF couplings and in the two bond FF couplings, the indirect contribution can normally be ignored without introducing serious error to the determination of molecular orientation and/or structure. However, a more accurate method is to partially correct for the indirect contribution by utilising the transferability of the spin-spin coupling tensors in related molecules. This is due to the fact that even small contributions may be significant, if the order parameter of the internuclear direction is negligibly small, leading to dominating indirect contributions. The very good agreement of the experimental values with the calculated coupling constants and the reasonable agreement in the anisotropic properties, which are experimentally much more difficult to define, indicates that the MCSCF LR method is capable of producing reliable J tensors for these systems, contrary to the case of density-functional theory.  相似文献   

13.
Quantum chemical calculations of CF(3)Br and the CF(3) radical are performed using density functional theory (DFT) and time-dependent DFT (TDDFT). Molecular structures, vibrational frequencies, dipole moment, bond dissociation energy, and vertical excitation energies of CF(3)Br are calculated and compared with available experimental results. The performance of six hybrid and five hybrid meta functionals in DFT and TDDFT calculations are evaluated. The ωB97X, B3PW91, and M05-2X functionals give very good results for molecular structures, vibrational frequencies, and vertical excitation energies, respectively. The ωB97X functional calculates well the dipole moment of CF(3)Br. B3LYP, one of the most widely used functionals, does not perform well for calculations of the C-Br bond length, bond dissociation energy, and vertical excitation energies. Potential energy curves of the low-lying excited states of CF(3)Br are obtained using the multiconfigurational spin-orbit ab initio method. The crossing point between 2A(1) and 3E states is located near the C-Br bond length of 2.45 ?. Comparison with CH(3)Br shows that fluorination does not alter the location of the crossing point. The relation between the calculated potential energy curves and recent experimental result is briefly discussed.  相似文献   

14.
The electronic structure and electron affinity of the acetyloxyl radical (CH3COO) were investigated by low-temperature anion photoelectron spectroscopy and ab initio calculations. Photoelectron spectra of the acetate anion (CH3COO-) were obtained at two photon energies (355 and 266 nm) and under three different temperatures (300, 70, and 20 K) with use of a new low-temperature ion-trap photoelectron spectroscopy apparatus. In contrast to a featureless spectrum at 300 K, a well-resolved vibrational progression corresponding to the OCO bending mode was observed at low temperatures in the 355 nm spectrum, yielding an accurate electron affinity for the acetyloxyl radical as 3.250 +/- 0.010 eV. This experimental result is supported by ab initio calculations, which also indicate three low-lying electronic states observed in the 266 nm spectrum. The calculations suggest a 19 degrees decrease of the OCO angle upon detaching an electron from acetate, consistent with the vibrational progression observed experimentally.  相似文献   

15.
An ab initio interpolated potential energy surface (PES) for the Cl+CH(4) reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl+CH(4) and Cl+CD(4) reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl+CH(4) and Cl+CD(4) reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH(4) molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH(3) and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from backward peaked to sideways peaked as collision energy increases, as seen in the experiments and other theoretical calculations.  相似文献   

16.
The vibrational spectra of the binary complexes formed by HONO-trans and HONO-cis with dimethyl and diethyl ethers have been investigated using ab initio calculations at the SCF and MP2 levels with 6-311++G(d,p) basis set and B3LYP calculations with 6-31G(d,p) and 6-31+G(d,p) basis sets. Full geometry optimisation was made for the complexes studied. The accuracy of the ab initio calculations have been estimated by comparison between the predicted values of the vibrational characteristics (vibrational frequencies and infrared intensities) and the available experimental data. It was established, that the methods, used in this study are well adapted to the problem under examination. The predicted values with the B3LYP calculations are very near to the results, obtained with 6-311++G(d,p)/MP2. The ab initio and DFT calculations show that the changes in the vibrational characteristics (vibrational frequencies and infrared intensities) upon hydrogen bonding for the hydrogen-bonded complex (CH3)2O...HONO-trans are larger than for the complex (CH3)2O...HONO-cis.  相似文献   

17.
薛冬峰 《化学研究》2003,14(2):21-23
利用量子化学的第一性原理,在自洽场理论水平上对尿素晶体的线性和非线性光学介电性质进行了定量计算,获得了与实验值相符的理论计算结果.提供了一种解决分子晶体量子化学理论计算的新思路.  相似文献   

18.
The 129Xe nuclear magnetic resonance spectrum of xenon in gas mixtures of Xe with other molecules provides a test of the ab initio surfaces for the intermolecular shielding of Xe in the presence of the other molecule. We examine the electron correlation contributions to the Xe-CO2, Xe-N2, Xe-CO, Xe-CH4, and Xe-CF4 shielding surfaces and test the calculations against the experimental temperature dependence of the density coefficients of the Xe chemical shift in the gas mixtures at infinite dilution in Xe. Comparisons with the gas phase data permit the refinement of site-site potential functions for Xe-N2, Xe-CO, and Xe-CF4 especially for atom-Xe distances in the range 3.5-6 A. With the atom-atom shielding surfaces and potential parameters obtained in the present work, construction of shielding surfaces and potentials for applications such as molecular dynamics averaging of Xe chemical shifts in liquid solvents containing CH3, CH2, CF3, and CF2 groups is possible.  相似文献   

19.
The molecular structures of methylphosphine (CH(3)PH(2)) and methylphosphine-borane (CH(3)PH(2).BH(3)) have been determined from gas-phase electron diffraction data and rotational constants, employing the SARACEN method. The experimental geometric parameters generally showed a good agreement with those obtained using ab initio calculations and previous microwave spectroscopy studies. In order to assess the accuracy of the calculated structures a range of ab initio methods were used, including the CCSD(T) method, with correlation-consistent basis sets. The structural environment around the phosphorus atom was found to change significantly upon complexation with borane, with the P-C bond length shortening and the bond angles widening.  相似文献   

20.
In this work we present a study of the F+CH(4)-->HF+CH(3) reaction (DeltaHdegrees(298 K)=-32.0 kcal mol(-1)) using different methods of the chemical reaction theory. The ground potential energy surface (PES) is characterized using several ab initio methods. Full-dimensional rate constants have been calculated employing the variational transition state theory and using directly ab initio data. A triatomic analytical representation of the ground PES was derived from ab initio points calculated at the second- and fourth-order M?ller-Plesset levels with the 6-311+G(2df,2pd) basis set, assuming the CH(3) fragment to be a 15 a.m.u. pseudoatom in the fitting process. This is suggested from experiments that indicate that the methyl group is uncoupled to the reaction coordinate. A dynamics study by means of the quasiclassical trajectory (QCT) method and employing this analytical surface was also carried out. The experimental data available on the HF internal states distributions are reproduced by the QCT results. Very recent experimental information about the reaction stereodynamics is also borne out by our QCT calculations. Comparisons with the benchmark F+H(2) and analogous Cl+CH(4) reactions are established throughout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号