首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
以盐酸、硝酸、氢氟酸溶解红土镍矿样品,加入高氯酸冒烟除去硅和氟,在稀盐酸和氯化锶溶液介质中,于原子吸收光谱仪波长285.2 nm处,使用空气–乙炔火焰,测定样品中氧化镁的含量。在最佳实验条件下,镁的质量浓度在0.20~1.00 mg/L与吸光度呈线性关系,其检出限为0.036 mg/L。该方法用于红土镍矿中氧化镁含量的测定,相对标准偏差小于1.2%,加标回收率为99.1%~100.3%。氧化镁质量分数在0.15%~5.00%范围内的重复性及再现性方程分别为r=0.023m+0.037和R=0.133m–0.028。该方法适合于测定氧化镁含量在0.15%~5.00%的红土镍矿。  相似文献   

2.
建立火焰原子吸收光谱法测定粗锌中的铜含量。采用硝酸–酒石酸溶解样品,并以其为测定溶液介质,检测波长为324.7 nm,以水为参比,采用空气–乙炔火焰以原子吸收光谱仪进行测定。在优化的实验条件下,铜的质量浓度在0.10~2.50μg/m L范围内与吸光度有良好线性关系,相关系数为0.999 7,方法检出限为0.01μg/m L。测定结果的相对标准偏差为1.0%~3.0%(n=11),样品加标回收率为97%~102%。该方法具有灵敏度高,干扰少,重现性好等优点,适用于铜含量在0.001%~0.50%之间的粗锌中铜的测定。  相似文献   

3.
火焰原子吸收光谱法测定青铜中铬   总被引:1,自引:0,他引:1  
原子吸收光谱法测定铬的方法报道很多 ,由于铬的原子吸收光谱法相当灵敏 ,但光谱干扰复杂 ,并且铬以重铬酸盐形式存在时 ,此相同浓度其它形式的铬盐响应信号更高[1 ] 。有关复杂成分样品中铬的测定方法也有报道 [2 ,3] ,但是含锆等元素的青铜中铬的原子吸收光谱法测定的结果往往不能令人满意。本文介绍了青铜的溶样方法 ,用硫酸钠消除锆、锰等元素的干扰 ,并保持铬标准溶液与测定样品中铬的氧化态的一致性。在波长 357.9nm处 ,用空气 -乙炔火焰进行原子吸收光谱测定。本法灵敏度为0 .0 4 4μg.ml- 1 ,通过对实际样品分析 ,其准确度及灵敏度…  相似文献   

4.
火焰原子吸收光谱测定污泥中铜和锌   总被引:3,自引:0,他引:3  
  相似文献   

5.
火焰原子吸收光谱法测定重晶石中锌铜铁   总被引:4,自引:1,他引:4  
提出了火焰原子吸收光谱法测定重晶石中锌、铜和铁的方法 ,相对标准偏差为 1 .7%~7.3% ,加标回收率在 95.2 %~ 1 0 3.2 %之间。特征浓度锌为 0 .0 1 0 μg·ml-1/1 % ,铜为 0 .0 35μg·ml-1/1 % ,铁为 0 .0 67μg· ml-1/1 %。方法简便、准确、可靠。  相似文献   

6.
火焰原子吸收光谱法测定焊锡中铜铁锌   总被引:3,自引:0,他引:3  
焊锡中微量元素铜、铁、锌的含量影响焊接质量,当含量超过规定的允许量,会造成焊接不牢或虚焊.在焊接过程中,这些元素的含量还可能有变化,因而需要时常检验,以监控焊锡的质量.目前检测焊锡中微量元素常用的方法是ICP-AES法[1,2],原子吸收光谱法也有报道[3],使用溴化氢-溴水溶样,有时须分离铅.本文对火焰原子吸收光谱法测定焊锡的工作条件和基体影响进行了研究,不用分离锡、铅,可直接测定,能满足焊锡测定的要求.  相似文献   

7.
火焰原子吸收光谱法测定锰电解液中铜锌镉铅   总被引:5,自引:0,他引:5  
在酸性和低温条件下,用适量乙醇使锰电解液中的MnSO4沉淀分离,用火焰原子吸收光谱法直接测定锰电解液中铜,锌、镉和铅含量。方法简便、快速,实用,具有较高的精密度和准确性。相对标准偏差3.8%-4.5%,回收率90.5%-106.5%,特征浓度铜为0.49μg.ml^-1/1%,锌为0.008μg.ml^-1/1%,镉为0.015μg.ml^-1/1%,铅为0.18μg.ml^-1/1%。  相似文献   

8.
经过条件试验,建立了热解齐化-原子吸收光谱法直接测定红土镍矿中汞含量的方法。样品中汞含量在57~1752μg/kg,重复测定的相对标准偏差(RSD)在1.6%~5.3%(n=11),回收率在92.79%~94.77%,与冷原子吸收光谱法的方法间相对偏差为5.18%~11.93%。方法准确、快速、样品用量少、无试剂污染,适合于批量样品的测试,有应用和推广价值。  相似文献   

9.
应用火焰原子吸收光谱法(FAAS)测定钒基合金(V-Cr-Ti三元合金)中铬的含量。取样0.100 0g,用硫酸(1+1)溶液5mL及硝酸2 mL加热溶解后蒸发至冒硫酸烟。冷却后移至100mL容量瓶中,加水定容。分取适量样品溶液(其中含Cr约为0.1~0.5mg)置于另一100mL容量瓶中,加入20g·L~(-1)硫酸钾溶液10mL(作为对共存元素V和Ti的抗干扰试剂,同时起到增敏作用明显提高信号强度),加水定容为100.0mL(溶液中含硫酸0.5%),按仪器工作条件测定溶液中铬的含量。在优化的试验条件下,铬的质量浓度在1.00~5.00mg·L~(-1)内与相应的吸光度之间呈线性关系。应用此方法测定了实际样品中铬的含量,测定值的相对标准偏差(n=6)为0.64%,以实际样品为基体,按照标准加入法在2个浓度水平上进行回收试验,测得回收率的平均值为97.1%。  相似文献   

10.
铝合金样品溶于盐酸及过氧化氢中,其铬量用火焰原子吸收光谱法测定.采用空气-乙炔富燃火焰原子化并用锶盐作干扰抑制剂.铬的工作曲线浓度范围为1.2~20.0 mg·L-1(r=0.999).方法应用于4个铝合金标样的测定,所得结果与标准值相符.方法的RSD(n=5)值在2.1%~4.2%之间,回收率在97%~104%之间.  相似文献   

11.
报道了用直接消解法处理蜂蜜,在选定光谱条件下,用火争原子吸收分光光度计测定其中的钙和锌,与湿法,干法消解处理的试样相比较,该法操作简单,结果令人满意,加标回收率钙为99-101.9%。锌为98.8%-105%,相对标准偏差钙为4.4%-5.9%,锌为2.1%-3.8%检出限钙为0.138ug.mL^-1,锌为0.084ug.mL^-1。  相似文献   

12.
通过对铜冶炼渣化学组成和性质的研究,确定了测定镍的实验方法。铜冶炼渣中二氧化硅含量在20%~40%,硫含量10%~20%,样品的分解具有一定的难度,必然影响镍的测定结果,因此需在样品分解过程中加入一定量的氟化氢铵、溴使二氧化硅生成四氟化硅、硫生成硫化氢挥发除去,溶液中其余共存元素主要有铜、银、铁、锌等元素不干扰测定结果,在硝酸(5%)介质中,用火焰原子吸收光谱法测定镍的含量,测定范围为0.01%~1%,加标回收率在99.5%~100.4%,测定结果的相对标准偏差(n=7)在0.61%~1.18%,检出限为0.004μg/mL,方法快速,简捷,能够满足日常生产检测需要。  相似文献   

13.
采用火焰原子吸收光谱法测定镍基高温合金中的镉,样品以硝酸-氢氟酸-水混合溶液(1+1+1)前处理,选择Cd 228.8nm为分析线进行测定,并通过标准加入法校正基体效应。考察了消解酸的选择,仪器工作参数的调整,基体和共存离子对镉测定的影响。结果表明,镍基高温合金中镉的检出限为0.088μg/g。加标回收率为94.1%~109%,结果的相对标准偏差(RSD,n=8)在0.54%~1.6%。方法操作简便、分析速度快、准确度好,适用于镉含量在0.0001%~0.001%的镍基高温合金中的测定。  相似文献   

14.
采用火焰原子吸收光谱法测定镍基高温合金中的镉,样品以硝酸-氢氟酸-水混合溶液(1+1+1)前处理,选择Cd 228.8 nm为分析线进行测定,并通过标准加入法校正基体效应。考察了消解酸的选择,仪器工作参数的调整,基体和共存离子对镉测定的影响。结果表明,镍基高温合金中镉的检出限为0.088μg/g。加标回收率为94.1%~109%,结果的相对标准偏差(RSD,n=8)在0.54%~1.6%。方法操作简便、分析速度快、准确度好,适用于镉含量在0.0001%~0.001%的镍基高温合金中的测定。  相似文献   

15.
建立了火焰原子吸收光谱法测定锡阳极泥中铜元素的分析方法。对锡阳极泥样品,采用盐酸、硝酸、高氯酸分解,氢溴酸挥发除去锡和锑的溶样方式,火焰原子吸收光谱仪测定铜,测定范围为1%~5%,并考察了仪器条件、不同酸浓度、干扰元素对铜含量测定的影响。实验结果表明铜的检出限为0.013μg/mL,加标回收率为95.5%~104%,相对标准偏差为0.81%~2.1%,方法准确度高、精密度好,能够很好地满足锡阳极泥中铜元素的测定。  相似文献   

16.
采用氢氟酸-硝酸分解试样,用高氯酸蒸发至冒烟除去硅;在硝酸介质(5%)中,采用火焰原子吸收光谱法于324.8nm波长处测定工业硅中铜含量。方法能有效地消除硅的干扰,测量结果相对标准偏差在5%以内,加标回收率在99.0%~102%。方法具有操作简便、快速、容易掌握、成本低的优点。  相似文献   

17.
建立了用火焰原子吸收光谱法在同一体系中连续测定铋锭中的铜、银、锌的方法。试样用硝酸溶解,在稀盐酸介质中,分别于原子吸收光谱仪波长324.7,328.1,213.8nm处,使用空气-乙炔火焰连续测定铜、银、锌的含量。在最佳实验条件下,铜的质量浓度在0.20~0.80mg/L范围内与吸光度线性关系良好,加标回收率为94.5%~101.8%。银的质量浓度在0.5~2.0mg/L范围内与吸光度成线性关系,加标回收率为97.3%~102.6%。锌的质量浓度在0.10~0.40mg/L范围内与吸光度成线性关系,加标回收率为96%~106.3%。火焰原子吸收光谱法测定铋锭中的铜、银、锌,相对标准偏差(n=11)均小于8.0%,测定结果与理论值基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号