首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The ING2 plant homeodomain (PHD) finger is recruited to the nucleosome through specific binding to histone H3 trimethylated at lysine 4 (H3K4me3). Here, we describe backbone and side chain assignments of the ING2 PHD finger, analyze its binding to the unmodified and modified histone and p53 peptides, and map the histone H3 and H3K4me3 binding sites based on chemical shift perturbation analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Nucleosomes carry extensive post‐translational modifications (PTMs), which results in complex modification patterns that are involved in epigenetic signaling. Although two copies of each histone coexist in a nucleosome, they may not carry the same PTMs and are often differently modified (asymmetric). In bivalent domains, a chromatin signature prevalent in embryonic stem cells (ESCs), namely H3 methylated at lysine 4 (H3K4me3), coexists with H3K27me3 in asymmetric nucleosomes. We report a general, modular, and traceless method for producing asymmetrically modified nucleosomes. We further show that in bivalent nucleosomes, H3K4me3 inhibits the activity of the H3K27‐specific lysine methyltransferase (KMT) polycomb repressive complex 2 (PRC2) solely on the same histone tail, whereas H3K27me3 stimulates PRC2 activity across tails, thereby partially overriding the H3K4me3‐mediated repressive effect. To maintain bivalent domains in ESCs, PRC2 activity must thus be locally restricted or reversed.  相似文献   

3.
Lysine-specific histone demethylase 1 (LSD1) represents the first example of an identified nuclear protein with histone demethylase activity. In particular, it plays a special role in the epigenetic regulation of gene expression, as it removes methyl groups from mono- and dimethylated lysine 4 and/or lysine 9 on histone H3 (H3K4me1/2 and H3K9me1/2), behaving as a repressor or activator of gene expression, respectively. Moreover, it has been recently found to demethylate monomethylated and dimethylated lysine 20 in histone H4 and to contribute to the balance of several other methylated lysine residues in histone H3 (i.e., H3K27, H3K36, and H3K79). Furthermore, in recent years, a plethora of nonhistone proteins have been detected as targets of LSD1 activity, suggesting that this demethylase is a fundamental player in the regulation of multiple pathways triggered in several cellular processes, including cancer progression. In this review, we analyze the molecular mechanism by which LSD1 displays its dual effect on gene expression (related to the specific lysine target), placing final emphasis on the use of pharmacological inhibitors of its activity in future clinical studies to fight cancer.Subject terms: Epigenetics, Histone post-translational modifications  相似文献   

4.
Using the amber suppression approach, Nϵ‐(4‐azidobenzoxycarbonyl)‐δ,ϵ‐dehydrolysine, an allysine precursor is genetically encoded in E. coli. Its genetic incorporation followed by two sequential biocompatible reactions allows convenient synthesis of proteins with site‐specific lysine dimethylation. Using this approach, dimethyl‐histone H3 and p53 proteins have been synthesized and used to probe functions of epigenetic enzymes including histone demethylase LSD1 and histone acetyltransferase Tip60. We confirmed that LSD1 is catalytically active toward H3K4me2 and H3K9me2 but inert toward H3K36me2, and methylation at p53 K372 directly activates Tip60 for its catalyzed acetylation at p53 K120.  相似文献   

5.
Polycomb Polycomb repressive complex 2 (PRC2) plays a key role in silencing epigenetic gene through trimethylation of lysine 27 on histone 3 (H3K27). Dysregulations of PRC2 caused by overexpression and mutations of the core subunits of PRC2 have been implicated in many cancers. The core subunits EZH1/2 are histone-lysine N-methyltransferases that function as the enzymatic component of PRC2. While the core subunit EED is a scaffolding protein to support EZH1/2 and binds JARID2K116me3/H3K27me3 to enhance the enzymatic activity of PRC2 through allosteric activation. Recently, several small molecules that compete with JARI2K116me3 and H3K27me3 have been reported. These molecules selectively bind to the JARID2K116me3/H3K27me3-binding pocket of EED, thereby preventing the allosteric regulation of PRC2. These first-in-class PRC2 inhibitors show robust suppression in DLBCL cell lines, demonstrating anticancer drugs that target the EED subunit of PRC2 are viable. In this study, we used the recently developed MM/GBSA_IE and the alanine scanning method to analyze the hot spots in EED/inhibitor interactions. The analysis of these hot and warm spots helps us to understand the fundamental differences between inhibitors. Our results give a quantitative explanation on why the binding affinities of EED/A-395 interactions are stronger than that of EED/EED226 while their binding modes are similar and provide valuable insights for rational design of novel EED inhibitors.  相似文献   

6.
Histone methylation has emerged as a central epigenetic modification with both activating and repressive roles in eukaryotic chromatin. Drosophila HP1 (heterochromatin‐associated protein 1) is one of the chromodomain proteins that contain the essential aromatic residues as the recognition pocket for lysine methylated histone H3 tail. The aromatic cage indicates that the complex of chromodomain protein binding lysine methylated histone H3 tail can be seen as a typical host–guest system between protein and protein. About 10‐ns molecular dynamics simulations have been carried out in this study to examine how the presence of mono‐, trimethylated lysine 9 histone H3 tail (Me1K9, Me3K9 H3) influences the motions of HP1 protein receptor. The study shows that the conformation of HP1 protein free of H3 tail easily changes, whereas that of HP1 protein bound to methylated H3 tail does not. But the conformation of inserted Me1K9 H3 changes obviously as the Me1K recognition makes hydrogen‐bonded interactions associated with the aromatic cage even more unstable than those in free HP1 protein. The conformational change of Me1K9 H3 is correlated with the motions of HP1 protein. As the recognition factor going from Me1K to Me3K produces a more favorable interaction for aromatic ring, hydrogen‐bonded interactions associated with aromatic cage in Me3K9 H3‐HP1 complex were observed to be much more stable than those in Me1K9 H3‐HP1 complex and free HP1. Because of correlation, the flexibility of Me3K9 H3 decreases. The simulations indicate that both the MeK and the surrounding histone tail sequence are necessary features of recognition which significantly affect the flexibility and backbone motions of HP1 chromodomain. These findings confirm a regulatory mechanism of protein–protein interactions through a trimethylated post‐translational modification. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

7.
8.
Herein we report on the synthesis and ionophore properties of the first asymmetric p-tert-butylcalix[4]-p-R-thiacalix[4]tubes 7a-c (R = t-Bu, H, 1-adamantyl). The target compounds were obtained by the condensation of tosyloxyethoxy-p-tert-butylcalix[4]arene with the corresponding p-R-thiacalix[4]arenes in the presence of K2CO3 in acetonitrile. The complexation with sodium, potassium and rubidium iodides was studied in CDCl3-CD3OD (4:1) medium by means of 1H NMR measurements. It was found that the ionophore properties of calixtubes 7a-c are controlled by the character of the substituents at the upper rim of the thiacalix[4]arene fragment and it was shown that only the molecular tube 7c with an adamantane-containing thiacalixarene unit is capable of quantitatively binding potassium (swiftly) and rubidium (slowly) cations.  相似文献   

9.
10.
11.
ADAMTS13 (A Disintegrin and Metalloprotease with Thrombospondin type 1 repeats, member 13) cleaves von Willebrand Factor (VWF) multimers to limit the prothrombotic function of VWF. The deficiency of ADAMTS13 causes a lethal thrombotic microvascular disease, thrombotic thrombocytopenic purpura (TTP). ADAMTS13 circulates in a “closed” conformation with the distal domain associating the Spacer domain to avoid off-target proteolysis or recognition by auto-antibodies. However, the interactions of the distal TSP8 domain and the Spacer domain remain elusive. Here, we constructed the TSP8-Spacer complex by a combination of homology modelling and flexible docking. Molecular dynamics simulation was applied to map the binding sites on the TSP8 or Spacer domain. The results predicted that R1075, D1090, R1095, and C1130 on the TSP8 domain were key residues that interacted with the Spacer domain. R1075 and R1095 bound exosite-4 tightly, D1090 formed multiple hydrogen bonds and salt bridges with exosite-3, and C1130 interacted with both exosite-3 and exosite-4. Specific mutations of exosite-3 (R568K/F592Y/R660K/Y661F/Y665F) or the four key residues (R1075A/D1090A/R1095A/C1130A) impaired the binding of the TSP8 domain to the Spacer domain. These results shed new light on the understanding of the auto-inhibition of ADAMTS13.  相似文献   

12.
Histone tails are highly flexible N- or C-terminal protrusions of histone proteins which facilitate the compaction of DNA into dense superstructures known as chromatin. On a molecular scale histone tails are polyelectrolytes with high degree of conformational disorder which allows them to function as biomolecular "switches", regulating various genetic processes. Unfortunately, their intrinsically disordered nature creates obstacles for comprehensive experimental investigation of both the structural and dynamical aspects of histone tails, because of which their conformational behaviors are still not well understood. In this work we have carried out ~3 microsecond long all atom replica exchange molecular dynamics (REMD) simulations for each of four histone tails, H4, H3, H2B, and H2A, and probed their intrinsic conformational preferences. Our subsequent free energy landscape analysis demonstrated that most tails are not fully disordered, but show distinct conformational organization, containing specific flickering secondary structural elements. In particular, H4 forms β-hairpins, H3 and H2B adopt α-helical elements, while H2A is fully disordered. We rationalized observed patterns of conformational dynamics of various histone tails using ideas from physics of polyelectrolytes and disordered systems. We also discovered an intriguing re-entrant contraction-expansion of the tails upon heating, which is caused by subtle interplay between ionic screening and chain entropy.  相似文献   

13.
1INTRODUCTIONInrecentyears,aseriesoflanthanide aluminiumcomplexeswhichareactiveforpoly merizationofolfins〔1〕havebeenreported....  相似文献   

14.
15.
The H4 histone tail plays a critical role in chromatin folding and regulation--it mediates strong interactions with the acidic patch of proximal nucleosomes and its acetylation at lysine 16 (K16) leads to partial unfolding of chromatin. The molecular mechanism associated with the H4 tail/acidic patch interactions and its modulation via K16 acetylation remains unknown. Here we employ a combination of molecular dynamics simulations, molecular docking calculations, and free energy computations to investigate the structure of the H4 tail in solution, the binding of the H4 tail with the acidic patch, and the effects of K16 acetylation. The H4 tail exhibits a disordered configuration except in the region Ala15-Lys20, where it exhibits a strong propensity for an α-helical structure. This α-helical region is found to dock very favorably into the acidic patch groove of a nucleosome with a binding free energy of approximately -7 kcal mol(-1). We have identified the specific interactions that stabilize this binding as well as the associated energetics. The acetylation of K16 is found to reduce the α-helix forming propensity of the H4 tail and K16's accessibility for mediating external interactions. More importantly, K16 acetylation destabilizes the binding of the H4 tail at the acidic patch by mitigating specific salt bridges and longer-ranged electrostatic interactions mediated by K16. Our study thus provides new microscopic insights into the compaction of chromatin and its regulation via posttranslational modifications of histone tails, which could be of interest to chromatin biology, cancer, epigenetics, and drug design.  相似文献   

16.
The dihydrogen compound trans-[Ru((R)-BINAP)(H)(eta2-H2)((R,R)-dpen)]+ (2', BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, dpen = 1,2-diphenylethylenediamine) is a proposed intermediate in asymmetric ketone hydrogenations. It quickly reacts at -80 degrees C with 1 equiv of the base KOtBu in 2-PrOH-d8/CH2Cl2-d2 under H2 to generate trans-Ru((R)-BINAP)(H)(2-PrO)((R,R)-dpen) (4). The alkoxide 4 does not react with H2 after hours under ambient conditions. Addition of 1 equiv of KOtBu to 4 produces a hydrogen bonded species 10 that reacts readily with H2 at -80 degrees C to generate the dihydride catalytic intermediate trans-[Ru((R)-BINAP)(H)2((R,R)-dpen)] (3'). Addition of 1 equiv of ((CH3)3Si)2NK to the alkoxide 4 produces the amide catalytic intermediate 5. Compound 5 reacts reversibly with H2 to generate 3'.  相似文献   

17.
Kim K  Choi SH  Jeon J  Lee H  Huh JO  Yoo J  Kim JT  Lee CH  Lee YS  Churchill DG 《Inorganic chemistry》2011,50(12):5351-5360
One 8-phenyl and two 8-mesityl-substituted "scorpionate"-like BODIPY-type species of the formula [3,4,4-tris(5-R-(2-thienyl))-8-(2,4,6-R'-phenyl)-4-bora-3a,4a-diaza-s-indacene (R = H, R' = H, 3a; R, = H, R' = Me, 2a; R, = Me, R' = Me, 2b)] have been synthesized and fully characterized. Importantly, differences in their solution (MeCN) optical Cu(2+) and Hg(2+) probing capacity via SSS-chelation were investigated. Compounds 2a-3a were prepared from the requisite 8-substituted BODIPY complexes. They were characterized first by complete (1)H, (11)B and (13)C NMR spectroscopic assignments (CD(3)Cl or CD(3)C(O)CD(3)); the molecular structures of 2a and 3a were determined by X-ray crystallography. Compounds 2a-3a were studied by UV-vis and fluorescence spectroscopy [Φ(F) = 0.27 ± 0.013 (2a); 0.024 ± 0.0016 (2b); 0.0034 ± 0.00047 (3a)]. Importantly, low [Cu(2+)] with 3a (<3.0 × 10(-5) M) gave rise to an increase of fluorescence intensity (off-on; 6.3-fold), whereas with 2a it decreased (on-off). When [Hg(2+)] (<3.0 × 10(-5) M) was added to 2b, the λ(em,max) value increased (off-on; 3.2-fold), and for 2a, it decreased (on-off). The association constant (K(a)) for Hg(2+)·2a was determined to be 3120 ± 307 M(-1). An approximate stoichiometric 1:1 binding determined by Job plot analysis is in line with successful DFT modeling of SSS-Cu(2+) binding for this system type. (1)H NMR spectroscopy also revealed tentative sets of product complex peaks. These simple differences caused by formal ligand Me-group incorporation are the first for any related fluorophores, to the best of our knowledge.  相似文献   

18.
The protein lysine methyltransferase G9a, which controls gene expression by epigenetic regulation of H3K9 methylation, is related to various human diseases, including cancer, drug addiction, and mental retardation. In recent years, genetic, biological, and physiological evidence has established G9a inhibitors as potential chemotherapeutic agents for cancer treatment. In this study, we identified protoberberine alkaloid pseudodehydrocorydaline (CT13) as a novel G9a inhibitor, by structure-based virtual screening of in-house library containing natural product compounds. The activity of CT13 was determined by biophysical analyses involving MALDI-TOF mass spectrometry and western blot analysis. CT13 showed selective inhibitory activity against G9a and suppressed the level of H3K9me2 in MCF7 human breast cancer cells. Molecular docking analysis suggested the binding mode of CT13 which occupies the binding site of histone H3 substrate. CT13 provides a novel scaffold for further development of analogous synthetic G9a inhibitors.

Graphical abstract

  相似文献   

19.
In the crystal of K(3)H(SO(4))(2) or K(3)D(SO(4))(2), dimers SO(4)???H???SO(4) or SO(4)???D???SO(4) are linked by strong centrosymmetric hydrogen or deuterium bonds whose O???O length is ≈2.50 A?. We address two open questions. (i) Are H or D sites split or not? (ii) Is there any structural counterpart to the phase transition observed for K(3)D(SO(4))(2) at T(c) ≈ 85.5 K, which does not exist for K(3)H(SO(4))(2)? Neutron diffraction by single-crystals at cryogenic or room temperature reveals no structural transition and no resolvable splitting of H or D sites. However, the width of the probability densities suggest unresolved splitting of the wavefunctions suggesting rigid entities H(L1∕2) -H(R1∕2) or D(L1∕2) -D(R1∕2) whose separation lengths are l(H) ≈ 0.16 A? or l(D) ≈ 0.25 A?. The vibrational eigenstates for the center of mass of H(L1∕2) -H(R1∕2) revealed by inelastic neutron scattering are amenable to a square-well and we suppose the same potential holds for D(L1∕2) -D(R1∕2). In order to explain dielectric and calorimetric measurements of mixed crystals K(3)D((1 - ρ))H(ρ)(SO(4))(2) (0 ≤ ρ ≤ 1), we replace the classical notion of order-disorder by the quantum notion of discernible (e.g., D(L1∕2) -D(R1∕2)) or indiscernible (e.g., H(L1∕2) -H(R1∕2)) components depending on the separation length of the split wavefunction. The discernible-indiscernible isostructural transition at finite temperatures is induced by a thermal pure quantum state or at 0 K by ρ.  相似文献   

20.
Lysine‐specific demethylase 5A (KDM5A) has recently become a promising target for epigenetic therapy. In this study, we designed and synthesized metal complexes bearing ligands with reported demethylase and p27 modulating activities. The Rh(III) complex 1 was identified as a direct, selective and potent inhibitor of KDM5A that directly abrogate KDM5A demethylase activity via antagonizing the KDM5A‐tri‐/di‐methylated histone 3 protein–protein interaction (PPI) in vitro and in cellulo. Complex 1 induced accumulation of H3K4me3 and H3K4me2 levels in cells, causing growth arrest at G1 phase in the triple‐negative breast cancer (TNBC) cell lines, MDA‐MB‐231 and 4T1. Finally, 1 exhibited potent anti‐tumor activity against TNBC xenografts in an in vivo mouse model, presumably via targeting of KDM5A and hence upregulating p27. Moreover, complex 1 was less toxic compared with two clinical drugs, cisplatin and doxorubicin. To our knowledge, complex 1 is the first metal‐based KDM5A inhibitor reported in the literature. We anticipate that complex 1 may be used as a novel scaffold for the further development of more potent epigenetic agents against cancers, including TNBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号