首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Australian sweet lupin, the largest legume crop grown in Western Australia, is receiving global attention from the producers of new foods. To understand the effect of protein on cheese yield, lupin milk proteins were separated from the first, second, and third filtrations by cheesecloths. However, proteins from the first and second were analyzed using two-dimensional polyacrylamide gel electrophoresis; then, the isolated proteins associated with cheese production were identified. The research also focused on identifying the optimal method of cheese production based on the coagulation process, temperature, yield, and sensory evaluation. Lupin curds from the two cultivars, Mandelup and PBA Jurien, were produced using vinegar, lemon juice, starter culture, vegetable rennet enzyme as coagulant, as well as curd generated using starter culture and vegetable rennet enzyme. Cow’s milk was used as a control. The results indicated that first-time filtration produced better extraction and higher yield of lupin proteins and cheese than the second filtration. A sensory analysis indicated that lupin cheese produced from PBA Jurien lupin milk using vinegar, 7.80% expressed as acetic acid, and ground in 45 °C water, was the most acceptable. The cheeses were examined for their protein, carbohydrates, fat, ash, and moisture contents. The concentration of protein was approximately 27.3% and 20.6%, respectively, in the cheese from PBA Jurien and Mandelup. These results suggest that lupin milk can adequately supply the proteins needed in human diets and, thus, could be used in the production of many existing products that require animal milk as an input.  相似文献   

2.
This study aimed to define a consortium of lactic acid bacteria (LAB) that will bring added value to dried fresh cheese through specific probiotic properties and the synthesis of bioactive peptides (biopeptides). The designed LAB consortium consisted of three Lactobacillus strains: S-layer carrying Levilactobacillus brevis D6, exopolysaccharides producing Limosilactobacillus fermentum D12 and plantaricin expressing Lactiplantibacillus plantarum D13, and one Enterococcus strain, Enterococcus faecium ZGZA7-10. Chosen autochthonous LAB strains exhibited efficient adherence to the Caco-2 cell line and impacted faecal microbiota biodiversity. The cheese produced by the LAB consortium showed better physicochemical, textural and sensory properties than the cheese produced by a commercial starter culture. Liquid chromatography coupled with matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry (LC-MALDI-TOF/TOF) showed the presence of 18 specific biopeptides in dried fresh cheeses. Their identification and relative quantification was confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using multiple reaction monitoring (MRM). The results also showed that their synthesis resulted mainly from β-casein and also α-S1 casein degradation by proteolytic activities of the LAB consortium. The designed LAB consortium enhanced the functional value of the final product through impact on biopeptide concentrations and specific probiotic properties.  相似文献   

3.
A rapid ultra-high performance liquid chromatography (UHPLC) protocol for the determination of amino acids as their respective 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives was successfully applied for assessing free amino acid levels in commercial cheese samples representing typical product groups (ripening protocols) in cheesemaking. Based on the Waters AccQ.Tag? method as a high performance liquid chromatography (HPLC) amino acid solution designed for hydrolyzate analyses, method adaptation onto UHPLC was performed, and detection of AQC derivatives was changed from former fluorescence (λ Ex 250 nm/λ Em 395 nm) to UV (254 nm). Compared to the original HPLC method, UHPLC proved to be superior by facilitating excellent separations of 18 amino acids within 12 min only, thus demonstrating significantly shortened runtimes (>35 min for HPLC) while retaining the original separation chemistry and amino acid elution pattern. Free amino acid levels of the analyzed cheese samples showed a high extent of variability depending on the cheese type, with highest total amounts found for original Italian extra-hard cheeses (up to 9,000 mg/100 g) and lowest for surface mold- or bacterial smear-ripened soft cheeses (200–600 mg/100 g). Despite the intrinsic variability in both total and specific concentrations, the established UHPLC method enabled reliable and interference-free amino acid profiling throughout all cheese types, thus demonstrating a valuable tool to generate high quality data for the characterization of cheese ripening.  相似文献   

4.
A common fraud in the dairy field is the addition of sheep's milk to goat's cheeses, because it has a very similar taste to goat's milk, but is more available, and is commonly considered to have a better capacity to curdle. For similar reasons, and due to economic convenience, sheep's cheeses may also contain fraudulent cow's milk. In order to detect this fraud, an EU official method may be used, but it is only a qualitative method (presence/absence of cow's milk). A method able to quantify the presence of sheep's milk during cheese production in goat's and cow's cheeses was developed. The method is based on liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) analysis of peptides of a casein extract from the cheese. By a simple procedure, caseins are extracted from cheeses, solubilized, digested with plasmin, and subsequently analyzed by LC/ESI‐MS/MS. A typical sheep's peptide produced by plasmin hydrolysis (m/z = 860) was accurately selected and analyzed to understand if, and by how much, a declared pure goat's cheese contains sheep's milk. By analyzing the same peptide it is also possible to detect if, and by how much, a declared pure sheep's milk contains, or not, cow's milk. The method was applied to several goat's and cow's cheese samples. Quantitation was performed with a calibration curve obtained by analyzing curd cheeses containing different percentages of sheep's milk. The method detection limit and method quantitation limit were evaluated. This method appears accurate and suitable for detecting up to 2% of sheep's milk in cheeses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The incorporation of prebiotics in fermented milk products is one of the best ways to promote health benefits while improving their sensory characteristics at the same time. The aim of this study was to evaluate the effects of the addition of fructose and oligofructose (1% and 2%) on the physicochemical, rheological, sensory, and microbiological quality attributes of fermented milk products inoculated with indigenous probiotic starter cultures of Lactobacillus isolated from Polish traditional fermented foods. The samples were evaluated during 35 days of refrigerated storage. The oligofructose and fructose caused increases in the populations of bacteria in comparison to the control fermented milk products without the addition of saccharides. The degrees of acidification in different fermented milk samples, as well as their viscosity, firmness, syneresis, and color attributes, changed during storage. The highest overall sensory quality levels were observed for the samples supplemented with L. brevis B1 and oligofructose. This study is the first attempt to compare the influences of different sugar sources on the physicochemical, rheological, sensory, and microbiological quality attributes of fermented milk products.  相似文献   

6.
A set of commercial milk and Sicilian cheeses was analysed by a combination of fast field cycling (FFC) nuclear magnetic resonance (NMR) relaxometry and chemometrics. The NMR dispersion (NMRD) curves were successfully analysed with a mathematical model applied on Parmigiano–Reggiano (PR) cheese. Regression parameters were led back to the molecular components of cheeses (water trapped in casein micelles, proteins and fats) and milk samples (water belonging to hydration shells around dispersed colloidal particles of different sizes and bulk water). The application of chemometric analysis on relaxometric data enabled differentiating milk from cheeses and revealing differences within the two sample groups of either cheeses or milk samples. Marked differences among cheeses were evidenced by statistical analysis of the sole quadrupolar peaks parameters, suggesting that these contain information on the nature of the milk used during cheese production. Hence, combination of FFC NMR and chemometrics represents a powerful tool to investigate alterations in dairy products.  相似文献   

7.
Fossa cheese is an Italian hard cheese, ripened for up to 3 months in underground pits dug into tuffaceous rock. During this period, the cheese develops a unique flavour and intense and somewhat piquant aroma. Solid-phase microextraction gas chromatography/mass spectrometry (SPME-GC/MS) was utilized to characterize the volatile organic compounds (VOCs) of Fossa cheese. A total of 75 VOCs were separated and identified; in particular, the major class of compounds found in the cheeses ripened in the pits were the esters of fatty acids. Discriminant analysis of volatile profiles allowed us to distinguish between cheeses in different stages of seasoning (60-day-old cheese and cheese ripened an additional 90 days in and out of the pits).  相似文献   

8.
Saffron is a widespread consumed spice containing many phytochemicals. It is often used in dairy technologies to enhance color and flavor of cheeses, but it is also known for its several therapeutic effects, as well as its antiproliferative and anticancer properties. In this study High Performance Liquid Chromatography was used to characterize saffron bioactive compounds in cow and ewe cheeses made with saffron, and the antiproliferative effect of the crocin-rich extracts from cheeses was investigated on different cellular lines (CaCo2, MDA-MB-231 and HeLa) by MTT assay. Crocins were observed in all cheese samples, with the total content ranging between 0.54 and 30.57 mg trans-4-GG/100 g cheese, according to the different cheese making process. Picrocrocin was detected in no cheese (probably due to its degradation during cheese making), while safranal was detected only in one ewe cheese (mainly due to its high volatility). HeLa and MDA-MB-231 cells were sensitive to treatment with crocin-rich extracts from cheeses, while no effect was observed on CaCo2 cells. The chemical environment of the food matrix seems to have a great influence on the crocin antiproliferative effect: the crocin-rich extracts from cheese with both high residual N/protein and fat contents showed increased antiproliferative effect compared to pure crocin (trans-4-GG), but cheeses from different milk species (type of fats and proteins) could also play an important role in modulating crocin’s antiproliferative effects.  相似文献   

9.
This paper concerns the effect of thermal-drying methodology on the investment cost for dried kefir cells production in order to be used as starter culture in cheese manufacturing. Kefir cells were produced at pilot plant scale using a 250-L bioreactor and whey as the main substrate. Kefir cells were subsequently dried in a thermal dryer at 38?°C and used as a starter culture in industrial-scale production of hard-type cheeses. The use of thermally dried kefir as starter culture accelerated ripening of cheeses by increasing both lipolysis and fermentation rate as indicated by the ethanol, lactic acid, and glycerol formation. Additionally, it reduced coliforms and enterobacteria as ripening proceeded. This constituted the basis of developing an economic study in which industrial-scale production of thermally dried kefir starter culture is discussed. The industrial design involved a three-step process using three bioreactors of 100, 3,000, and 30,000 L for a plant capacity of 300 kg of thermally dried kefir culture per day. The cost of investment was estimated at 238,000 €, which is the 46% of the corresponding cost using freeze-drying methodology. Production cost was estimated at 4.9 €/kg of kefir biomass for a 300-kg/day plant capacity, which is the same as with the corresponding cost of freeze-dried cells. However, the estimated added value is up to 10.8?×?109 € within the European Union.  相似文献   

10.
Isolated strains of halotolerant or halophilic lactic acid bacteria (HALAB) from Cotija and doble crema cheeses were identified and partially characterized by phenotypic and genotypic methods, and their technological abilities were studied in order to test their potential use as dairy starter components. Humidity, aw, pH, and salt concentration of cheeses were determined. Genotypic diversity was evaluated by randomly amplified polymorphic DNA-polymerase chain reaction. Molecular identification and phylogenetic reconstructions based on 16S rRNA gene sequences were performed. Additional technological abilities such as salt tolerance, acidifying, and proteolytic and lipolytic activities were also investigated. The differences among strains reflected the biodiversity of HALAB in both types of cheeses. Lactobacillus acidipiscis, Tetragenococcus halophilus, Weissella thailandensis, and Lactobacillus pentosus from Cotija cheese, and L. acidipiscis, Enterococcus faecium, Lactobacillus plantarum, Lactobacillus farciminis, and Lactobacillus rhamnosus from doble crema cheese were identified based on 16S rRNA. Quantitative and qualitative assessments showed strains of T. halophilus and L. plantarum to be proteolytic, along with E. faecium, L. farciminis, and L. pentosus to a lesser extent. Lipolytic activity could be demonstrated in strains of E. faecium, L. pentosus, L. plantarum, and T. halophilus. Strains belonging to the species L. pentosus, L. plantarum, and E. faecium were able to acidify the milk media. This study evidences the presence of HALAB that may play a role in the ripening of cheeses.  相似文献   

11.
The goal of the present study was to increase the content of intracellular long-chain fatty acids in two bacterial strains, Pseudomonas aeruginosa PA14 and Escherichia coli K-12 MG1655, by co-overexpressing essential enzymes that are involved in the fatty acid synthesis metabolic pathway. Recently, microbial fatty acids and their derivatives have been receiving increasing attention as an alternative source of fuel. By introducing two genes (accA and fabD) of P. aeruginosa into the two bacterial strains and by co-expressing with them the fatty acyl?Cacyl carrier protein thioesterase gene of Streptococcus pyogenes (strain MGAS10270), we have engineered recombinant strains that are efficient producers of long-chain fatty acids (C16 and C18). The recombinant strains exhibit a 1.3?C1.7-fold increase in the production of long-chain fatty acids over the wild-type strains. To enhance the production of total long-chain fatty acids, we researched the carbon sources for optimized culture conditions and results were used for post-culture incubation period. E. coli SGJS17 (containing the accA, fabD, and thioesterase genes) produced the highest content of intracellular total fatty acids; in particular, the unsaturated fatty acid content was about 20-fold higher than that in the wild-type E. coli.  相似文献   

12.
A rapid, reliable and precise capillary gas chromatographic method for routine quantification of short- and long-chain free fatty acids (FFA) in milk and cheese is described. Procedures of (1) lipid extraction, (2) isolation of the FFA from milk and cheese extracts, and (3) capillary gas chromatographic analysis were developed and optimized. FFA can be extracted from cheese for 95–100% with ether-heptane after grinding with sodium sulfate and addition of 2.5 M sulfuric acid. From milk, 95–100 % of the FFA (≤ C8:0) are also extracted with ether-heptane after addition of ethanol and 2.5 M sulfuric acid. Internal standards are used to compensate for the losses of lower FFA (C2:0–C8:0) in the aqueous phase. In view of the excellent recovery (98–100 %) and a considerable saving of time, the use of an aminopropyl column is preferred for the isolation of the FFA from lipid-extracts. The underivatized FFA are separated directly by capillary gas chromatography making use of columns which enable accurate and rapid (≤ 40 min) determination of FFA C2:0–C20:0. With the method described, all major FFA (C2:0–C18:3) in milk and cheese can be quantified with good repeatability (rsd less then 2 %). The method is also applicable to the analysis of short-chain fatty acids in other products.  相似文献   

13.
Microorganisms have been used for biodiesel (fatty acid methyl ester) production due to their significant environmental and economic benefits. The aim of the present research was to develop new strains of Escherichia coli K-12 MG1655 and to increase the content of long-chain fatty acids by overexpressing essential enzymes that are involved in the fatty acid synthase elongation cycle. In addition, the relationship of β-ketoacyl-acyl carrier protein (ACP) synthase (fabH), β-ketoacyl-ACP reductase (fabG), β-hydroxyacyl-ACP dehydrase (fabZ), and β-enoyl-ACP reductase (fabI) with respect to fatty acid production was investigated. The four enzymes play a unique role in fatty acid biosynthesis and elongation processes. We report the generation of recombinant E. coli strains that produced long-chain fatty acids to amounts twofold over wild type. To verify the results, NAD+/NADH ratios and glucose analyses were performed. We also confirmed that FabZ plays an important role in producing unsaturated fatty acids (UFAs) as E. coli SGJS25 (overexpressing the fabZ gene) produced the highest percentage of UFAs (35 % of total long-chain fatty acids), over wild type and other recombinants. Indeed, cis-9-hexadecenoic acid, a major UFA in E. coli SGJS25, was produced at levels 20-fold higher than in wild type after 20 h in culture. The biochemically engineered E. coli presented in this study is expected to be more economical for producing long-chain fatty acids in quality biodiesel production processes.  相似文献   

14.
A proteolytic enzymatic preparation (using one of three enzyme concentrations and, hence, one of three different enzymatic activity levels) was added (before clotting) to the milk used to manufacture Ossau-Iraty ewes'-milk cheese. The free amino acids were analysed by reversed-phase high-performance liquid chromatography and the sulphosalicylic acid-soluble N fraction was quantified by the trinitrobenzenesulphonic acid method for use as an index of proteolysis during ripening. Sensory analysis of the cheeses began after two months of ripening. Use of the enzymatic preparation increased the rate of release of amino acids in an amount proportional to the enzyme concentration employed. The effect of the preparation was more pronounced in the early months of ripening, with the differences in the free amino acid contents of the various batches decreasing as ripening progressed. Levels of certain free amino acids, such as taurine, tyrosine and valine, were virtually unaffected by the addition of the enzymatic preparation, whereas levels of such amino acids as serine, glycine, arginine and proline were reduced. Texture defects in the cheeses were observed, namely, reduced elasticity and creaminess and increased brittleness. Similarly, enzymatic treatment also gave rise to bitter flavours that were not characteristic of the normal taste and aftertaste of Ossau-Iraty cheese and these changes were proportional to the quantity of enzyme added.  相似文献   

15.
Current scientific evidence indicates that consumption of industrial trans fatty acids (TFA) produced via partial hydrogenation of vegetable oils increases the risk of coronary heart disease. However, some studies have suggested that ruminant TFA, especially vaccenic acid (VA or 11t-18:1) and rumenic acid (RA or 9c,11t-18:2), which is a conjugated linoleic acid (CLA) isomer, may have potential beneficial health effects for humans. To date, no concerted effort has been made to provide detailed isomer composition of ruminant TFA and CLA of Canadian dairy products, information that is required to properly assess their nutritional impacts. To this end, we analyzed the fatty acid profile of popular brands of commercial cheese (n = 17), butter (n = 12), milk (n = 8), and cream (n = 4) sold in retail stores in Ottawa, Canada, in 2006-2007 by silver nitrate thin-layer chromatography and gas liquid chromatography. The average total TFA content of cheese, butter, milk, and cream samples were 5.6, 5.8, 5.8, and 5.5% of total fatty acids, respectively. VA was the major trans-octadecenoic acid (18:1) isomer in all the Canadian dairy samples with average levels of (as % total trans-18:1) 33.9% in cheese, 35.6% in butter, 31.0% milk, and 30.1% in cream. The different dairy products contained very similar levels of CLA, which ranged from 0.5 to 0.9% of total fat. RA was the major CLA isomer of all the dairy products, accounting for 82.4-83.2% of total CLA. There were no significant differences (P > 0.05) in the fatty acid profile between the 4 different dairy groups, which suggests lack of processing effects on the fatty acid profile of dairy fat.  相似文献   

16.
Ferulic acid (FA) is widely used in foods, in beverages, and in various pharmaceutical industries as a precursor of vanillin. FA biotransformation can occur during the growth of lactic acid bacteria (LAB), and its conversion to other phenolic derivatives is observed by many scientists, where ferulic acid esterase (FAE) and ferulic acid decarboxylase (FDC) play significant roles. The present study aimed at screening a panel of LAB for their ability to release FA from rice bran, an agro waste material. FAE and FDC activities were analyzed for the preliminary screening of various dairy isolates. Two Pediococcus acidilactici isolates were selected for studying further the hydrolysis of FA from rice bran and its bioconversion into phenolic derivatives like 4-ethylphenol, vanillin, vanillic acid, and vanillyl alcohol. P. acidilactici M16, a probiotic isolate, has great potential for the production of FA from rice bran and could be exploited as starter culture in the food industry for the production of biovanillin.  相似文献   

17.
A mathematical model has been developed for the key reactions taking place during cheese ripening. It includes growth and lysis of cells in the cheese matrix, cell-wall bound proteinases and intracellular peptidases that are released into cheese upon cell lysis, and the production of peptides and amino acids from casein in cheese. The model parameters have been estimated using published experimental data for cheddar cheese, and model simulations have been conducted to suggest effective means of reducing ripening times of cheeses. The time required for ripening of cheeses can be significantly reduced by carefully controlling the cell numbers at the beginning of cheese ripening and their proteinase and peptidase activities.  相似文献   

18.
This study provides important information about the impacts of various levels of oat (OBG) and bacterial (curdlan) β-glucan and fat contents in milk on survivability and metabolism of yogurt starter cultures. The results show that addition of β-glucans in the concentration higher than 0.25% reduced starter bacterial counts during storage and prolonged the milk acidification process. A significant increase in lactose consumption by starter cultures was noted in the yogurt samples with OBG addition up to 0.75%. The highest (by 567% on average) increase in lactic acid content was noted in the control yogurts. Whereas the lowest (by 351%) increase in lactic acid content was noted in yogurts with OBG. After 28-day storage, the acetic aldehyde content was significantly influenced by fat content, type and addition level of polysaccharide. A higher increase in acetoin content was noted in samples with 0.25% than in samples with 1% of polysaccharides. In turn, significantly lower increases in diacetyl and 2,3-pentanedione contents were observed in the yogurt samples with OBG than in these with curdlan, with diacetyl production increase along with the higher concentration of the polysaccharide. The addition of OBG and curdlan to milk contributed to differences in the starter culture metabolism, consequently, in the milk acidification dynamics.  相似文献   

19.
Collagen has become popular in dietary supplements, beverages and sports nutrition products. Therefore, the aim of this study was to evaluate the possibility of using various doses of collagen and collagen hydrolysate to produce probiotic sheep’s milk fermented with Lactobacillus acidophilus, Lacticaseibacillus casei, Lacticaseibacillus paracasei and Lacticaseibacillus rhamnosus. The effects of storage time, type and dose of collagen, and different probiotic bacteria on the physicochemical, organoleptic and microbiological properties of fermented sheep’s milk at 1 and 21 days of refrigerated storage were investigated. The addition of collagen to sheep’s milk increased the pH value after fermentation and reduced the lactic acid contents of fermented milk compared to control samples. After fermentation, the number of probiotic bacteria cells was higher than 8 log cfu g−1. In sheep’s milk fermented by L. acidophilus and L. casei, good survival of bacteria during storage was observed, and there was no effect of collagen dose on the growth and survival of both strains. The addition of collagen, both in the form of hydrolysate and bovine collagen, resulted in darkening of the color of the milk and increased the sweet taste intensity of the fermented sheep’s milk. However, the addition of hydrolysate was effective in reducing syneresis in each milk sample compared to its control counterpart.  相似文献   

20.
A novel method is reported for analyzing adulteration of goat and ewe cheeses with cow's milk: capillary zone electrophoresis (CZE) in isoelectric, acidic buffers (50 mM imino diacetic acid, IDA, pH = pI 2.3). The cheese samples were extracted with a 20:80 v/v ethanol-water mixture in presence of 3 M urea and 1% beta-mercaptoethanol for 1 h. After centrifugation and lipid extraction, the samples were dissolved in 50 mM IDA, 6 M urea and 0.5% hydroxyethyl cellulose and analyzed by CZE at 700 V/cm. A total of 18 characteristic peaks were resolved among the three types of cheeses and 18 variables were defined as their respective areas. There was excellent similarity among the electrophoretic patterns obtained with cheeses of a given type of milk, while cheeses made with different types of milk were easily distinguishable. Most peaks were common to all cheeses, but the profile differed depending on the type of milk used. Principal component analysis, linear discriminant analysis, and partial least squares regression (PLS) were used for statistical analysis of the data obtained by CZE. In particular, by using PLS multivariate regression, the contents of cow's milk in presumably pure goat and ewe cheeses, as well as in binary and ternary mixtures, could be predicted with relative standard deviations of ca. 6-7%. In addition, the ripening time in goat and ewe cheeses could also be predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号