共查询到16条相似文献,搜索用时 93 毫秒
1.
针对脑肿瘤良恶性分类过程复杂、分类准确率不高等问题,提出了一种基于多尺度特征与通道特征融合的分类模型。该模型以ResNeXt网络为主干网络,首先,将基于空洞卷积的多尺度特征提取模块代替第一层卷积层,利用膨胀率获取不同感受野的图像信息,将全局特征与局部显著特征相结合;其次,添加通道注意力机制模块,融合特征通道信息,提高对肿瘤区域的关注度,降低对冗余信息的关注度;最后,采用学习率的线性衰减策略、图像的标签平滑策略以及基于医学图像的迁移学习策略的组合优化提高模型的学习能力和泛化能力。在BraTS2017和BraTS2019数据集中进行实验,准确率分别达到98.11%和98.72%。与经典模型和其他先进方法相比,该分类模型能够有效地减少分类过程的复杂度,提高脑肿瘤良恶性分类的准确率。 相似文献
2.
声场景探察和自动分类能帮助人类制定应对特定环境的正确策略,具有重要的研究价值。随着卷积神经网络的发展,出现了许多基于卷积神经网络的声场景分类方法。其中时频卷积神经网络(TS-CNN)采用了时频注意力模块,是目前声场景分类效果最好的网络之一。为了在保持网络复杂度不变的前提下进一步提高网络的声场景分类性能,该文提出了一种基于协同学习的时频卷积神经网络模型(TSCNN-CL)。具体地说,该文首先建立了基于同构结构的辅助分支参与网络的训练。其次,提出了一种基于KL散度的协同损失函数,实现了分支与主干的知识协同,最后,在测试过程中,为了不增加推理计算量,该文提出的模型只使用主干网络预测结果。在ESC-10、ESC-50和UrbanSound8k数据集的综合实验表明,该模型分类效果要优于TS-CNN模型以及当前大部分的主流方法。 相似文献
3.
4.
针对普通的三维卷积神经网络(3D CNN)从一个尺度上提取特征,会丢失部分细节信息,且对小样本任务表现一般的问题,本文提出了一种三支路的3D CNN,从不同尺度上提取特征后进行加权特征融合,从而获取了更为全面的特征;并引入数据增强技术,从而改善了小样本情形下的分类性能。现有特征融合方法通常对各个支路直接进行拼接,本文采用加权拼接的特征融合方法,将各特征分别乘以一个加权系数后再进行拼接,该系数通过模拟退火算法求取。本文方法在公开数据集Indian Pines,Pavia University,Salinas等上采用10%的数据进行训练,分别得到了98.60%、99.83%、99.97%的总体准确率,与各类对比方法相比,提升了高光谱遥感影像分类问题的准确率。 相似文献
5.
6.
融合多尺度局部特征与深度特征的双目立体匹配 总被引:2,自引:0,他引:2
针对立体匹配中不适定区域难以找到精确匹配点的问题,提出一种融合多尺度局部特征与深度特征的立体匹配方法。特征融合阶段包括两部分,其一是融合不同尺度下Log-Gabor特征和局部二值模式特征组合的浅层次特征,其二是将多尺度浅层融合特征和卷积神经网络提取的深度特征进行级联,形成既包含语义信息又包含结构化信息的特征图像。通过在极线垂直方向添加不同强度的噪声来构造正负样本,减小图像中极线对齐欠准带来的误差。将该方法与两种变体方法(改变或舍弃部分模块)在KITTI数据集进行对比实验,结果表明各模块设置具有合理性;与一些经典方法相比,所提方法取得了有竞争力的匹配性能。 相似文献
7.
8.
9.
10.
近红外光谱(NIR)分析具有分析高效、样品无损、环境无污染以及可现场检测等优点,特别适合药品的快速建模分析。但NIR存在吸收强度弱以及谱带重叠等缺点,需要建立稳健可靠的化学计量学模型对其进行分析。深度卷积神经网络是深度学习方法中一个重要分支,它通过逐层抽取数据特征并进行组合、转换,形成更高层的语义特征,具有极强的建模能力,广泛应用于计算机视觉、语音识别等领域,而在药品NIR分析方面尚未见报道。基于深度卷积网络模型,对药品NIR多分类建模进行研究。针对药品NIR数据的特点,设计若干个面向多品种、多厂商药品NIR分类的一维深度卷积网络模型。模型中卷积层和池化层交叠排列用于逐层抽取NIR数据特征,输出层连接softmax分类器,对药品NIR数据进行分类概率预测。在输出层之前采用全局最大池化层,将特征图进行整体池化,形成一个特征点,用于解决全连接层存在的限制输入维度大小,参数过多的问题。同时,在网络模型中引入批处理操作和dropout机制,以防止梯度消失和减小网络过拟合的风险。在网络模型的设计过程中,通过设计不同的卷积网络层数以及不同的卷积核尺寸大小,分析其对建模效果的影响,同时分析五种经典数据预处理方法对NIR分析的影响。以我国7个厂商生产的头孢克肟片和11个厂商生产的苯妥英钠片样本NIR为实验对象, 建立药品的多品种、多厂商分类模型,该模型在二分类、多分类实验中取得了良好的分类效果。在十八分类实验中,当训练集与测试集比例为7∶3时,分类准确率为99.37±0.45,比SVM, BP, AE和ELM算法取得更优的分类性能。同时,深度卷积神经网络模型推理速度较快,优于SVM和ELM算法,但训练速度慢于二者。大量实验结果表明,深度卷积神经网络可对多品种、多厂商药品NIR数据准确、可靠地判别分类,且模型具有良好的鲁棒性和可扩展性。该方法也可推广到烟草、石化等其他领域的NIR数据分类应用中。 相似文献
11.
针对声成像数据缺少条件下的水下沉底小目标分类问题,提出一种深度网络分类算法。首先,采用高斯混合模型对声影区统计特性进行建模并提取声图阴影,在此基础上构建仿真数据集和真实数据集。将仿真数据集输入卷积神经网络进行训练,保留其特征提取部分,用于对真实数据集进行特征提取.重建网络分类部分并采用真实数据集的特征向量进行训练。结果表明,所提出的方法分类正确率可达88.24%,与6种对照方法相比平均分类正确率分别提升8.67%,20.47%,19.78%,11.59%,9.01%,11.58%。验证了所提出方法在小样本条件下具有较好对水下沉底小目标的分类能力。其学习曲线收敛到96.25%,仅比验证曲线高5.14%,说明在一定程度上缓解了过拟合问题。将改进的卷积神经网络应用于融合分类器,通过与逻辑回归分类器、支持向量机对目标进行分类并融合决策,正确率为93.33%,可进一步提高算法的正确率和稳定性. 相似文献
12.
Interference is a common problem in wireless communication, navigation and radar systems. A wide variety of interferences are used to degrade the communication quality especially in electronic warfare environment. In modern military communication systems, interference classification is an important module for its ability to obtain prior interference information before adopting related anti-interference method. This paper proposes a deep learning based interference classification method, which applies one-dimension convolutional neural networks to automatically extract interference features for classification. Computer simulations show better classification performance and lower computational complexity. Meanwhile, this proposed method is implied on software defined radios (SDR) hardware, more than 99% correct classification probability can be achieved with limited samples of the received signal, which verifies the robustness of this proposed method. 相似文献
13.
针对公共场所异常声的感知和识别问题,提出一种基于贝叶斯优化卷积神经网络的识别方法。提取声信号的Gammatone倒谱系数、倍频程功率谱、短时能量和谱质心,组合成声信号的特征图。构建卷积神经网络作为分类器,利用递增的卷积核设置和池化操作处理不同尺度的特征。基于贝叶斯优化算法优化卷积神经网络的模型参数,对包括火苗噼啪声、婴儿啼哭声、烟花燃放声、玻璃破碎声和警报声的5种公共场所异常声进行识别。该方法的识别结果与基于不同的特征提取和分类器方案得到的识别结果进行比较,结果表明该方法的识别效果优于其他特征提取和分类器方案的识别效果。最后分析了该方法在不同信噪比噪声干扰下的识别结果,验证了该方法的有效性。 相似文献
14.
针对水下非等声速信道声线弯曲导致传统滤波跟踪轨迹偏差的问题,提出一种循环神经网络的目标跟踪模型。该模型在缺乏声速剖面信息的情况下,通过数据驱动迭代训练,学习输入观测值与输出状态值之间的映射关系,实现目标位置和瞬态特征变化的精确获知。蒙特卡洛仿真实验结果表明,本文模型在非等声速信道下复杂机动场景中相较传统单模型滤波算法以及交互式多模型算法,水平距离跟踪精度分别提升4.06%,1.57%,深度估计精度分别提升0.87%,0.85%。本文模型相较于传统滤波方法具有更高的跟踪精度,并且能够在失配声速分布信道下进行迁移学习,提升模型在失配声场环境下的泛化性。 相似文献
15.
为更准确地实现扬声器异常声分类以及促进其分类的自动化,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)能量熵和遗传算法优化的支持向量机(Genetic Algorithm-Support Vector Machines,GA-SVM)的扬声器异常声分类方法。首先对测得的扬声器单元声响应信号进行VMD,然后提取每个变分模态函数(Variational Mode Function,VMF)的能量熵并进行统计分析,最后利用GA-SVM进行异常声判断。实验结果表明,与VMD时频熵、经验模态分解(Empirical Mode Decomposition,EMD)能量熵、EMD时频熵这3种特征提取方法相比,VMD能量熵能更准确地表征扬声器单元异常声特征,具有更高的平均识别率,其平均识别率为96.3%,较以上3种方法分别提高了18.3%,24.0%,54.3%。 相似文献