首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Proanthocyanidins are natural glycosidase inhibitors with excellent antioxidant activity. This study aims to search for a new source of proanthocyanidins for the prevention and treatment of type 2 diabetes with higher content and better activity and get their structure elucidated. First, the total proanthocyanidins contents (TOPCs), antioxidant activity, antidiabetic activity of seven common Polygonaceae plants were analyzed and compared. Then proanthocyanidins from the rhizome of Fagopyrum dibotrys were purified, and the detailed structure was comprehensively analyzed by ultraviolet visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), 13C nuclear magnetic resonance spectroscopy (13C NMR), reversed-phase high-performance liquid chromatography-electrospray mass spectrometry (RP-HPLC-ESI-MS), and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The rhizome of F. dibotrys showed the highest TOPCs, the strongest antioxidant, and antidiabetic activities; the TOPCs, antioxidant and antidiabetic activities were all very significantly positively correlated. Proanthocyanidins purified from the rhizome of F. dibotrys showed better antidiabetic activity than grape seed proanthocyanidins (GsPs). Seventy-two proanthocyanidins from trimer to undecamer with a mean degree of polymerization (mDP) of about 5.02 ± 0.21 were identified with catechin and epicatechin as the dominant monomers. Conclusion: Proanthocyanidins are the main antioxidant and antidiabetic active substances of F. dibotrys and are expected to be developed into potential antioxidant and hypoglycemic products.  相似文献   

2.
设计一个将中药有效成分提取、含量测定、抗氧化性能研究等集于一体,针对中药特色专业开设的综合实验。该实验以毛竹竹叶为原料,对竹叶总黄酮提取工艺参数进行考察。最佳工艺参数为:乙醇浓度为70%,料液比为1∶25,提取时间为2.0 h,提取温度为80℃时,总黄酮提取率可达2.24 mg/g,并进一步研究了竹叶黄酮的抗氧化性能。本实验涉及无机化学、有机化学中的提取理论知识,分析化学中数据处理方法及仪器分析中紫外分光光度计的使用。在锻炼了学生动手操作能力的基础上,又提高了学生对实验结果进行分析、评价的综合能力。  相似文献   

3.
Decoctions (leaves and roots) of Bruguiera gymnorhiza (L.) Lam. are traditionally used against diabetes in many countries, including Mauritius. This study endeavoured to evaluate the inhibitory potential of leaves, roots, twigs and fruits extracts (decoction and maceration) of B. gymnorhiza against key enzymes relevant to diabetes. Considering complications related to diabetes, other clinical enzymes, namely, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, elastase and pancreatic lipase, were used. Identification of compounds was carried out using ultra-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS). Antioxidant capacities were assessed using DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, metal chelating. The relationship between mode of extraction, plant parts and biological activities was determined using multivariate analysis. Macerated fruits, rich in phytochemicals (phenolic, flavanol, tannin, and triterpenoid), exhibited substantially high antioxidant capacities related to radical scavenging (DPPH: 547.75 ± 10.99 and ABTS: 439.59 ± 19.13 mg TE/g, respectively) and reducing potential (CUPRAC: 956.04 ± 11.90 and FRAP: 577.26 ± 4.55 mg TE/g, respectively). Additionally, the same extract significantly depressed AChE and BChE (3.75 ± 0.03 and 2.19 ± 0.13 mg GALAE/g, respectively), tyrosinase (147.01 ± 0.78 mg KAE/g), elastase (3.14 ± 0.08 mg OE/g) and amylase (1.22 ± 0.01 mmol ACAE/g) enzymatic activities. Phytochemical results confirmed the presence of 119 compounds in all maceration and 163 compounds in all decoction samples. The screening also revealed important compounds in the extracts, namely, quinic acid, brugierol, bruguierol A, epigallocatechin, chlorogenic acid, to name a few. Multivariate analysis reported that the plant parts of B. gymnorhiza greatly influenced the observed biological activities in contrast to the types of extraction methods employed. Docking calculations have supported the findings of the experimental part through the high binding affinity and strong interactions of some compounds against tyrosinase, AChE, BChE and elastase enzymes. The decocted root and leaf of B. gymnorhiza showed low to moderate antidiabetic activity, thereby partially supporting its traditional uses in the management of diabetes. However, the fruit, the most active organ, can be used as a diet supplement to reduce the risk of diabetes complications after evaluating its cytotoxic effects.  相似文献   

4.
Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation systems to obtain higher yields with increased phytochemical concentrations using convenient light sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth. Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense system and providing protection from oxidative damage. Since different plant species respond differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands before large-scale LED application for controlled in vitro plant growth. This review focuses on the most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids, anthocyanins, and antioxidant enzymes, have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号