首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study deals with selective separation of mono- and divalent cations from aqueous salt solutions using polymeric films based on polyethylene (PE) and polyamide6 (PA6), and two different commercial nanofiltration (NF) membranes. The diffusion rates (D) of ions (Na+ and Ca2+), separation factors (α) and ion rejections (R) of the films and NF membranes are examined comparatively as well as their surface morphology and hydrophilicity. It is observed that the diffusion rates of Na+ are in the range of 0.7–1.8 × 10−8cm2 .s−1 in the decreasing order of PE > NF90 > NF270 > PA6 while Ca2+ shows diffusion rates of 7.4–18.4 × 10−8 cm2 .s−1 in the increasing order of NF270 > NF90 ≈ PA6 > PE. Rejection values of the polymeric films and NF membranes against to Na+ and Ca2+ vary between 90% and 99.6%.The highest α(Ca2+/Na+) is found to be 20 for PA6 film. D, α, and R value of both polymeric films and NF membranes are strongly affected by the existence of osmosis during diffusion-dialysis and the sizes of hydrated sodiu and calcium ions. In conclusion, the film based on PA6 may be a good alternative for selective separation of mono- an divalent cations.  相似文献   

2.
This study relates interfacial interactions of bovine serum albumin (BSA) molecules in dilute solutions with its dilatational rheology. Dynamic surface tension and the associated dilational elastic modulus and viscosity for BSA and mixtures of BSA with Hofmeister electrolytes—NaCl, NaClO4, Na2SO4, NaF and Na2HPO4 have been studied using a sinusoidal surface compression and expansion for frequencies ranging from 0.01 to 0.4 Hz. at solution/air interface. In all the BSA + electrolyte systems, both the elastic modulus and viscosity show unusually high values compared with pure BSA or pure electrolytes. In the presence of NaF and Na2SO4 the viscosity of protein increases almost by 50–80-fold and the corresponding elastic modulus also changes by 30–50-fold. Hydrated Hofmeister ions surely influence the measured rheological properties. In addition, the synergistic effect of the hydrated protein and the vicinal hydrated electrolytes possibly contribute to the high viscosity and elasticity due to change in dynamics of these assemblies. Thus the behavior of BSA is effected by salts in different ways, especially due to the dynamics and strength of the water molecules in the assembly.  相似文献   

3.
Adsorption of electrolyte ions on metal oxides significantly affects the interfacial charge distribution. The general procedure for the prediction of surface charge on oxides in salt solutions was given by Sverjensky for the 2-pK Triple Layer Model (2-pK TLM) (Sverjensky, Geochim. Cosmochim. Acta 69:225–257, 2005). Based on his parameters values and by assuming parameters transferability (Piasecki, J. Colloid Interface Sci. 302:389–395, 2006) we have predicted the adsorption constants for three monovalent ions (Rb+, F?, Br?) for eight oxides within the framework of the 1-pK Triple Layer Model (1-pK TLM). The obtained parameters values along with the previously reported ones (Piasecki, J. Colloid Interface Sci. 302:389–395, 2006) allowed us to compare the adsorption affinities of alkali metal cations and halide anions, and construct the following Hofmeister series for the cations (Cs+≈ Rb+≈ K+< Na+< Li+) and for the anions (F?? Cl?≈ Br?< I?) for investigated oxides. The same lyotropic series was predicted by the 2-pK TLM. It indicates that Hofmeister series is invariable during parameter transfer between surface complexation models.  相似文献   

4.
The affinity of the polyether ionophore salinomycin to bind IA/IB metal ions was accessed using the Gibbs free energy of the competition reaction between SalNa (taken as a reference) and its rival ions: [M+-solution] + [SalNa] → [SalM] + [Na+-solution] (M = Li, K, Rb, Cs, Cu, Ag, Au). The DFT/PCM computations revealed that the ionic radius, charge density and accepting ability of the competing metal cations, as well as the dielectric properties of the solvent, have an influence upon the selectivity of salinomycin. The optimized structures of the monovalent metal complexes demonstrate the flexibility of the ionophore, allowing the coordination of one or two water ligands in SalM-W1 and SalM-W2, respectively. The metal cations are responsible for the inner coordination sphere geometry, with coordination numbers spread between 2 (Au+), 4 (Li+ and Cu+), 5/6 (Na+, K+, Ag+), 6/7 (Rb+) and 7/8 (Cs+). The metals’ affinity to salinomycin in low-polarity media follows the order of Li+ > Cu+ > Na+ > K+ > Au+ > Ag+ > Rb+ > Cs+, whereas some derangement takes place in high-dielectric environment: Li+ ≥ Na+ > K+ > Cu+ > Au+ > Ag+ > Rb+ > Cs+.  相似文献   

5.
We present a theoretical comparison of the surface forces between two graphite-like surfaces at salt concentrations below 10 mM with surfaces charged by various mechanisms. Surface forces include a surface charging or chemisorption contribution to the total free energy. Surfaces are charged by charge regulation (H+ binding), site competition (H+ and cation binding) and redox charging with electrodes coupled to a countercell. Constant surface charge is also considered. Surface parameters are calibrated to give the same potential when isolated. Nonelectrostatic physisorption energies of the potential determining ions provide a specific and significant contribution to the charging energy. Consequently ion specificity is found in the surface forces at concentrations of 1–10 mM, which is not observed under constant charge conditions. The force between redox electrodes continues to show Hofmeister effects at 0.01 mM. We refer to this low concentration Hofmeister effect as “Hofmeister charging”, and suggest that the more common high concentration ion specific effects may be known as “Hofmeister screening”. Hofmeister series are considered over LiCl, NaCl, KCl and NaNO3, NaClO4, NaSCN with the cations (or H+) being the potential determining ions. A K+ anomaly is attributed to the small size of the weakly hydrated chaotropic K+ ion, with Li+ and Na+ explicitly modelled as strongly hydrated cosmotropes.  相似文献   

6.
The antibacterial properties of silver are strongly controlled by the redox couple of silver/silver(I). This work reports the influence of phosphate anions on silver nanoparticle oxidation, which is important given the abundance of phosphate species in biological systems. The three different species of anions were found to have a varying degree of influence on silver oxidation with the order PO43−>HPO42−>H2PO4. It was found that in the presence of phosphate anions, the silver oxidation potential shifts to a less positive value, which indicated the increasing ease of the oxidation reaction of silver. Given that the interplay between silver and its cation is crucial to its antibacterial properties and significant concentrations of the HPO42− anion are present at biological pH (near neutral), it is essential that the influence of the dibasic anion (HPO42−) on silver oxidation dynamics be considered for biological systems.  相似文献   

7.
A symmetrical electrochemical cell has been developed to perform cyclic voltammetric study of a plasticised poly(vinyl chloride) (PVC) membrane. The plasticised PVC membrane of ca. 100 μm thickness was mounted in a specially laboratory-made electrochemical cell for voltammetric analysis on exposure to various sodium salt and metal chloride solutions. Symmetrical cyclic voltammograms were obtained when the sample and internal solutions contained same kind of metal salts. The coextraction constant of a metal salt for the plasticised PVC could be determined from either the positive or negative potential scans of a cyclic voltammetry. In addition, two coextraction constants could also be simultaneously obtained when the membrane was exposed to two different metal salts in the sample and internal solutions, respectively. It was observed that the more lipophilic of the cations or anions, the larger the coextraction constants of these ions for the plasticised PVC membrane. The results followed the Hofmeister sequence of ClO4>NO3>Br>Cl>OAc for anions and the ease of extraction of cations was in the order of Cs+>K+>Na+>Li+. The proposed method provides a simpler, faster and more convenient method to obtain the coextraction constants of metal salts for plasticised polymeric membranes.  相似文献   

8.
All-solid-state sodium batteries with poly(ethylene oxide) (PEO)-based electrolytes have shown great promise for large-scale energy storage applications. However, the reported PEO-based electrolytes still suffer from a low Na+ transference number and poor ionic conductivity, which mainly result from the simultaneous migration of Na+ and anions, the high crystallinity of PEO, and the low concentration of free Na+. Here, we report a high-performance PEO-based all-solid-state electrolyte for sodium batteries by introducing Na3SbS4 to interact with the TFSI anion in the salt and decrease the crystallinity of PEO. The optimal PEO/NaTFSI/Na3SbS4 electrolyte exhibits a remarkably enhanced Na+ transference number (0.49) and a high ionic conductivity of 1.33 × 10−4 S cm−1 at 45 °C. Moreover, we found that the electrolyte can largely alleviate Na+ depletion near the electrode surface in symmetric cells and, thus, contributes to stable and dendrite-free Na plating/stripping for 500 h. Furthermore, all-solid-state Na batteries with a 3,4,9,10-perylenetetracarboxylic dianhydride cathode exhibit a high capacity retention of 84% after 200 cycles and superior rate performance (up to 10C). Our work develops an effective way to realize a high-performance all-solid-state electrolyte for sodium batteries.

A high-performance all-solid-state PEO/NaTFSI/Na3SbS4 electrolyte for sodium batteries is realized owing to the electrostatic interaction between TFSI in the salt and Na3SbS4, which immobilizes TFSI anions and promotes the dissociation of NaTFSI.  相似文献   

9.
The impact of key classes of compounds found in wine on protein removal by the ion-exchange resin, Macro-Prep® High S, was examined by adsorption isotherm experiments. A model wine system, which contained a prototypical protein Bovine Serum Albumin (BSA), was used. We systematically changed concentrations of individual chemical components to generate and compare adsorption isotherm plots and to quantify adsorption affinity or capacity parameters of Macro-Prep® High S ion-exchange resin. The pH (hydronium ion concentration), ethanol concentration, and prototypical phenolics and polysaccharide compounds are known to impact interactions with proteins and thus could alter the adsorption affinity and capacity of Macro-Prep® High S ion-exchange resin. At low equilibrium protein concentrations (< ~0.3 (g BSA)/L) and at high equilibrium protein concentrations in model wines at various pH, the adsorption behavior followed the Langmuir isotherm, most likely due to the resin acting as a monolayer adsorbent. The resulting range of BSA capacity was between 0.15–0.18 (g BSA)/(g Macro-Prep® High S resin). With the addition of ethanol, catechin, caffeic acid, and polysaccharides, the protein adsorption behavior was observed to differ at higher equilibrium protein concentrations (> ~0.3 (g BSA)/L), likely as a result of Macro-Prep® acting as an unrestricted multilayer adsorbent at these conditions. These data can be used to inform the design and scale-up of ion-exchange columns for removing proteins from wines.  相似文献   

10.
We apply a recently developed surface-bulk partitioning model to interpret the effects of individual Hofmeister cations and anions on the surface tension of water. The most surface-excluded salt (Na2SO4) provides a minimum estimate for the number of water molecules per unit area of the surface region of 0.2 H2O A-2. This corresponds to a lower bound thickness of the surface region of approximately 6 A, which we assume is a property of this region and not of the salt investigated. At salt concentrations < or = 1 m, single-ion partition coefficients Kp,i, defined relative to Kp,Na+ = Kp,SO42- = 0, are found to be independent of bulk salt concentration and additive for different salt ions. Semiquantitative agreement with surface-sensitive spectroscopy data and molecular dynamics simulations is attained. In most cases, the rank orders of Kp,i for both anions and cations follow the conventional Hofmeister series, qualitative rankings of ions based on their effects on protein processes (folding, precipitation, assembly). Most anions that favor processes that expose protein surface to water (e.g., SCN-), and hence must interact favorably with (i.e., accumulate at) protein surface, are also accumulated at the air-water interface (Kp >1, e.g., Kp,SCN- =1.6). Most anions that favor processes that remove protein surface from water (e.g., F-), and hence are excluded from protein surface, are also excluded from the air-water interface (Kp,F- = 0.5). The guanidinium cation, a strong protein denaturant and therefore accumulated at the protein surface exposed in unfolding, is somewhat excluded from the air-water surface (Kp,GuH+ = 0.7), but is much less excluded than alkali metal cations (e.g., Kp,Na+ identical with 0, Kp,K+ = 0.1). Hence, cation Kp values for the air-water surface appear shifted (toward exclusion) as compared with values inferred for interactions of these cations with protein surface.  相似文献   

11.
The solubility parameters, and solution thermodynamics of temozolomide (TMZ) in 10 frequently used solvents were examined at five different temperatures. The maximum mole fraction solubility of TMZ was ascertained in dimethyl sulfoxide (1.35 × 10−2), followed by that in polyethylene glycol-400 (3.32 × 10−3) > Transcutol® (2.89 × 10−3) > ethylene glycol (1.64 × 10−3) > propylene glycol (1.47 × 10−3) > H2O (7.70 × 10−4) > ethyl acetate (5.44 × 10−4) > ethanol (1.80 × 10−4) > isopropyl alcohol (1.32 × 10−4) > 1-butanol (1.07 × 10−4) at 323.2 K. An analogous pattern was also observed for the other investigated temperatures. The quantitated TMZ solubility values were regressed using Apelblat and Van’t Hoff models and showed overall deviances of 0.96% and 1.33%, respectively. Apparent thermodynamic analysis indicated endothermic, spontaneous, and entropy-driven dissolution of TMZ in all solvents. TMZ solubility data may help to formulate dosage forms, recrystallize, purify, and extract/separate TMZ.  相似文献   

12.
This study examines the solubility and thermodynamics of febuxostat (FBX) in a variety of mono solvents, including “water, methanol (MeOH), ethanol (EtOH), isopropanol (IPA), 1-butanol (1-BuOH), 2-butanol (2-BuOH), ethylene glycol (EG), propylene glycol (PG), polyethylene glycol-400 (PEG-400), ethyl acetate (EA), Transcutol-HP (THP), and dimethyl sulfoxide (DMSO)” at 298.2–318.2 K and 101.1 kPa. The solubility of FBX was determined using a shake flask method and correlated with “van’t Hoff, Buchowski-Ksiazczak λh, and Apelblat models”. The overall error values for van’t Hoff, Buchowski-Ksiazczak λh, and Apelblat models was recorded to be 1.60, 2.86, and 1.14%, respectively. The maximum mole fraction solubility of FBX was 3.06 × 10−2 in PEG-400 at 318.2 K, however the least one was 1.97 × 10−7 in water at 298.2 K. The FBX solubility increased with temperature and the order followed in different mono solvents was PEG-400 (3.06 × 10−2) > THP (1.70 × 10−2) > 2-BuOH (1.38 × 10−2) > 1-BuOH (1.37 × 10−2) > IPA (1.10 × 10−2) > EtOH (8.37 × 10−3) > EA (8.31 × 10−3) > DMSO (7.35 × 10−3) > MeOH (3.26 × 10−3) > PG (1.88 × 10−3) > EG (1.31 × 10−3) > water (1.14 × 10−6) at 318.2 K. Compared to the other combinations of FBX and mono solvents, FBX-PEG-400 had the strongest solute-solvent interactions. The apparent thermodynamic analysis revealed that FBX dissolution was “endothermic and entropy-driven” in all mono solvents investigated. Based on these findings, PEG-400 appears to be the optimal co-solvent for FBX solubility.  相似文献   

13.
The effect of salt on the structure of a low density lipoprotein (LDL) and on the reversible polymerization of bovine serum albumin (BSA) reduced with 2-mercaptoethanol was investigated by means of ultracentrifugal analysis. The chaotropic anion, e.g., SCN and I, at 5M completely disrupted the LDL structure and effectively dissociated BSA oligomers at lower concentrations. The parallelism between the anion order of these effects and that of the chaotropic effect suggested that the observed salt effects are primarily based on the disruption of hydrophobic interactions. The cation effectiveness disrupting the LDL structure followed the order of their promoting effect on the water structure, i.e., Li+>Na+>K+>Cs+. However, Cs+ was most effective in dissociating BSA oligomers, and this was attributed to the -complex formation with the aromatic amino acid side chains which otherwise contribute to the promotion of the intermolecular hydrophobic association.  相似文献   

14.
This work aims at understanding the attachment mechanisms and stability of proteins on a chromatography medium to develop more efficient functionalization methodologies, which can be exploited in affinity chromatography. In particular, the study was focused on the understanding of the attachment mechanisms of bovine serum albumin (BSA), used as a ligand model, and protein G on novel amine-modified alumina monoliths as a stationary phase. Protein G was used to develop a column for antibody purification. The results showed that, at lower protein concentrations (i.e., 0.5 to 1.0 mg·mL−1), protein attachment follows a 1st-order kinetics compatible with the presence of covalent binding between the monolith and the protein. At higher protein concentrations (i.e., up to 10 mg·mL−1), the data preferably fit a 2nd-order kinetics. Such a change reflects a different mechanism in the protein attachment which, at higher concentrations, seems to be governed by physical adsorption resulting in a multilayered protein formation, due to the presence of ligand aggregates. The threshold condition for the prevalence of physical adsorption of BSA was found at a concentration higher than 1.0 mg·mL−1. Based on this result, protein concentrations of 0.7 and 1.0 mg·mL−1 were used for the functionalization of monoliths with protein G, allowing a maximum attachment of 1.43 mg of protein G/g of monolith. This column was then used for IgG binding–elution experiments, which resulted in an antibody attachment of 73.5% and, subsequently, elution of 86%, in acidic conditions. This proved the potential of the amine-functionalized monoliths for application in affinity chromatography.  相似文献   

15.
Two-phenoxy walled calix[4]pyrroles 1 and 2 strapped with small rigid linkers containing pyridine and benzene, respectively, have been synthesized. 1H NMR spectroscopic analyses carried out in CDCl3 revealed that both of receptors 1 and 2 recognize only F and HCO3 among various test anions with high preference for HCO3 (as the tetraethylammonium, TEA+ salt) relative to F (as the TBA+ salt). The bound HCO3 anion was completely released out of the receptors upon the addition of F (as the tetrabutylammonium, TBA+ salt) as a result of significantly enhanced affinities and selectivities of the receptors for F once converted to the TEAHCO3 complexes. Consequently, relatively stable TEAF complexes of receptors 1 and 2 were formed via anion metathesis occurring within the receptor cavities. By contrast, the direct addition of TEAF to receptors 1 and 2 produces different complexation products initially, although eventually the same TEAF complexes are produced as via sequential TEAHCO3 and TBAF addition. These findings are rationalized in terms of the formation of different ion pair complexes involving interactions both inside and outside of the core receptor framework.

The inherent selectivity of anion receptors can be reversed by ion pairing occurring both inside and outside of the receptor cavity.  相似文献   

16.
A very simple isopiestic method based on that of S. Christian is used for measuring the salting-in of water into nonpolar, low-volatility solvents by tetraalkylammonium salts. The quantity of excess water which is dissolved in such solvents is directly proportional to the salt concentration and is sharply dependent on the nature of the anion but is nearly insensitive to that of the R4N+ cation. The hydration ratioH, which we define as the moles of excess solubilized water per mole of R4N+ X, is directly relatable to the enthalpy of hydration of the anion X in several solvents and in the gas phase. The quantityH is also correlated with many free-energy terms including those for the Hofmeister lyotropic series, for the ability of the anions to salt nonelectrolytes out of water, for the free-energy terms for separation of these ions by reverse osmosis membranes, and for their nucleophilicities. A surprising (but not unprecedented) feature of the hydration ratio is that it, rather than its logarithm, behaves as a free-energy term. It is proposed that all these properties have in common the free energy of hydration of the anions, and this notion is supported by a close correspondence between the anionic hydration ratio and their hydrogen-bonding energies with proton donors in aprotic solvents. The results support scattered observations by other workers that isolated water molecules do not have an unusual inherent affinity for anions. Accordingly, large anionic hydration energies in bulk aqueous media reflect extensive cooperative interactions in the solvent. Implications for nucleophilic activity in phase transfer catalysis and enzyme activity are mentioned.  相似文献   

17.
Density functional theory (DFT) calculations have been performed to investigate the interfacial interactions of ionic liquids (ILs) on the α- and β-phases of phosphorene (P) and arsenene (As). Nine representative ILs based on the combinations of 1-ethyl-3-methylimidazolium ([EMIM]+), N-methylpyridinium ([MPI]+), and trimethylamine ([TMA]+) cations paired to tetrafluoroborate ([BF4]), trifluoromethanesulfonate ([TFO]), and chloridion (Cl) anions were used as adsorbates on the 2D P and As nanosheets with different phases to explore the effect of IL adsorption on the electronic and optical properties of 2D materials. The calculated structure, adsorption energy, and charge transfer suggest that the interaction between ILs and P and As nanosheets is dominated by noncovalent forces, and the most stable adsorption structures are characterized by the simultaneous interaction of the cation and anion with the surface, irrespective of the types of ILs and surfaces. Furthermore, the IL adsorption leads to the larger change in the electronic properties of β-phase P and As than those of their α-phase counterparts, which demonstrates that the adsorption properties are not only related to the chemical elements, but also closely related to the phase structures. The present results provide insight into the further applications of ILs and phosphorene (arsenene) hybrid materials.  相似文献   

18.
The data on coadsorption of tetraethylammonium (Et4N+), tetrapropylammonium (Pr4N+), and tetrabutylammonium (Bu4N+) cations with Cl, Br, and I anions on an uncharged mercury electrode are compared with the models of coadsorption in a common monolayer and two parallel layers. The second model is shown to be in best agreement with experimental isotherms. However, the least discrepancy between calculations and experimental results is obtained when coadsorption of mentioned cations and anions is described by the Frumkin isotherm for neutral molecules with certain effective adsorption parameters.  相似文献   

19.
Cisplatin and other metallodrugs have realised great success in clinical chemotherapeutic applications as anticancer drugs. However, severe toxicity to healthy cells and non-selectivity to cancer cells remains a challenge, warranting the further search for alternative agents. Herein, we report the anticancer potential of a series of complexes of the general formula [MCl(p-cym)(k2-N^N-L)]+ X and [MCl(Cp*)(k2-N^N-L)]+ X, where M is the metal centre (Ru(II), Os(II), Rh(III) or Ir(III)), L = 1-benzyl-4-pyridinyl-1-H-1,2,3-triazole for L1 and 1-picolyl-4-pyridinyl-1-H-1,2,3-triazole for L2 and X = Cl, BF4, BPh4. When evaluated for activity against some cancerous and non-cancerous cell lines (namely, HeLa, HEK293, A549 and MT4 cancer cells and the normal healthy kidney cells (BHK21)), most of the compounds displayed poor cytotoxicities against cancer cells except for complexes C2 ([RuCl(p-cym)(k2-N^N-L1)]+ BPh4, EC50 = 9–16 µM and SI = 14), C7 ([RuCl(p-cym)(k2-N^N-L2)]+ BPh4, EC50 = 17–53 µM and SI = 4) and C11 ([IrCl(Cp*)(k2-N^N-L2)]+ BF4, EC50 < 5 µM and SI > 10). Selected complexes C1 ([RuCl(p-cym)(k2-N^N-L1)]+ BF4), C5 ([IrCl(Cp*)(k2-N^N-L1)]+ BF4) and C11 showed significant interactions with model biomolecules such as guanosine-5′-monophosphate (5′-GMP), bovine serum albumin (BSA) and amino acids under physiological conditions, possibly through carbenylation and N-coordination with 5′-GMP, N-coordination with L-Histidine and L-proline. While the compounds showed good activities in reducing pyruvate to lactate, there was no direct correlation between catalytic transfer hydrogenation of pyruvate and the observed cytotoxic activities. As observed in this work, the marked influence of single atom replacement in ligand may provide a pivotal approach to improving the cytotoxicity and fine-tuning the selectivity to cancer cells.  相似文献   

20.
This work aims at unravelling the interactions in magnetic ionic liquids (MILs) by applying Symmetry-Adapted Perturbation Theory (SAPT) calculations, as well as based on those to set-up a polarisable force field model for these liquids. The targeted MILs comprise two different cations, namely: 1-butyl-3-methylimidazolium ([Bmim]+) and 1-ethyl-3-methylimidazolium ([Emim]+), along with several metal halides anions such as [FeCl4], [FeBr4], [ZnCl3] and [SnCl4]2− To begin with, DFT geometry optimisations of such MILs were performed, which in turn revealed that the metallic anions prefer to stay close to the region of the carbon atom between the nitrogen atoms in the imidazolium fragment. Then, a SAPT study was carried out to find the optimal separation of the monomers and the different contributions for their interaction energy. It was found that the main contribution to the interaction energy is the electrostatic interaction component, followed by the dispersion one in most of the cases. The SAPT results were compared with those obtained by employing the local energy decomposition scheme based on the DLPNO-CCSD(T) method, the latter showing slightly lower values for the interaction energy as well as an increase of the distance between the minima centres of mass. Finally, the calculated SAPT interaction energies were found to correlate well with the melting points experimentally measured for these MILs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号