首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors of this paper conducted a comparative metabolomic analysis of Ophiocordyceps sinensis (OS), providing the metabolic profiles of the stroma (OSBSz) and sclerotia (OSBSh) of OS by widely targeted metabolomics and untargeted metabolomics. The results showed that 778 and 1449 metabolites were identified by the widely targeted metabolomics and untargeted metabolomics approaches, respectively. The metabolites in OSBSz and OSBSh are significantly differentiated; 71 and 96 differentially expressed metabolites were identified by the widely targeted metabolomics and untargeted metabolomics approaches, respectively. This suggests that these 71 metabolites (riboflavine, tripdiolide, bromocriptine, lumichrome, tetrahymanol, citrostadienol, etc.) and 96 metabolites (sancycline, vignatic acid B, pirbuterol, rubrophen, epalrestat, etc.) are potential biomarkers. 4-Hydroxybenzaldehyde, arginine, and lumichrome were common differentially expressed metabolites. Using the widely targeted metabolomics approach, the key pathways identified that are involved in creating the differentiation between OSBSz and OSBSh may be nicotinate and nicotinamide metabolism, thiamine metabolism, riboflavin metabolism, glycine, serine, and threonine metabolism, and arginine biosynthesis. The differentially expressed metabolites identified using the untargeted metabolomics approach were mainly involved in arginine biosynthesis, terpenoid backbone biosynthesis, porphyrin and chlorophyll metabolism, and cysteine and methionine metabolism. The purpose of this research was to provide support for the assessment of the differences between the stroma and sclerotia, to furnish a material basis for the evaluation of the physical effects of OS, and to provide a reference for the selection of detection methods for the metabolomics of OS.  相似文献   

2.
Ultra-performance liquid chromatography/mass spectrometry-based metabolomics can been used for discovery of metabolite biomarkers to explore the metabolic pathway of diseases. Identification of metabolic pathways is key to understanding the pathogenesis and mechanism of disease. Myocardial dysfunction induced by sepsis (SMD) is a severe complication of septic shock and represents major causes of death in intensive care units; however its pathological mechanism is still not clear. In this study, ultrahigh-pressure liquid chromatography with mass spectrometry-based metabolomics with chemometrics anaylsis and multivariate pattern recognition analysis were used to detect urinary metabolic profile changes in a lipopolysaccharide-induced SMD mouse model. Multivariate statistical analysis including principal component analysis and orthogonapartial least squares discriminant analysis for the discrimination of SMD was conducted to identify potential biomarkers. A total of 19 differential metabolites were discovered by high-resolution mass spectrometry-based urinary metabolomics strategy. The altered biochemical pathways based on these metabolites showed that tyrosine metabolism, phenylalanine metabolism, ubiquinone biosynthesis and vitamin B6 metabolism were closely connected to the pathological processes of SMD. Consequently, integrated chemometric analyses of these metabolic pathways are necessary to extract information for the discovery of novel insights into the pathogenesis of disease.  相似文献   

3.
Allergic rhinitis (AR) negatively affects the healthy lives of many individuals. Most previous studies on AR focused on the expression of cytokines, with only a few analyzing cytokine expression from a metabolomics viewpoint. Therefore, it is worthwhile to study AR at the metabolic level. Consequently, we aimed to identify differential serum biomarkers by metabolomics. In this study, the orthogonal partial least squares discriminant analysis (OPLS-DA) model was applied to characterize the differences in serum samples collected from patients with AR and healthy volunteers. Ten metabolites (except hexadecanoic acid) were found to be altered significantly (p < .05) in the former group, according to results of principal component analysis and OPLS-DA, indicating that these metabolites could be potential biomarkers. MetaboAnalyst 4.0 and pathway enrichment analysis showed that these changes in metabolites mainly involved three pathways, namely, porphyrin and chlorophyll metabolism, arachidonic acid metabolism, and purine metabolism. Our findings may contribute to a better understanding of the potential pathogenesis mechanisms and provide a metabolic evidence for in-depth studies of AR.  相似文献   

4.
采用基于超高效液相色谱-高分辨质谱联用的非靶标代谢组学方法来研究温度对黄曲霉菌生理代谢的影响,使用交互偏最小二乘判别分析(Ortho PLS-DA)等化学计量学方法对代谢组数据进行多元统计分析,使用二级质谱信息和谱库检索定性黄曲霉菌代谢特征信息。使用内标结合混合质控样品的方法对非靶标代谢组方法进行质量控制。将该方法应用于研究温度对黄曲霉菌代谢组的影响,发现不同温度下有3 593个(T检验p0.01)差异表达代谢特征,筛选出20个候选差异代谢物。研究结果表明,温度显著影响三羧酸循环、脂肪酸、苯丙氨酸、色氨酸、络氨酸等生物合成路径,并调控黄曲霉毒素、黄匹阿尼酸、曲酸等次生代谢物生物合成路径酶活性。研究发现曲酸和黄曲霉毒素前体化合物与黄曲霉毒素的累积变化规律相似,可作为候选靶标进行验证。该研究为开展我国黄曲霉毒素风险评估和分子预警研究提供了新的路径和方法。  相似文献   

5.
Semen Euphorbiae (SE), the dry and mature seed of Euphorbia lathyris L., a common traditional Chinese medicine, has significant pharmacological activity. However, its toxicity limits its clinical application, and less toxic Semen Euphorbiae Pulveratum (SEP) is often used clinically. To explore the possible mechanism of SE frost-making and attenuation, this study used ultrahigh-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry to perform a comprehensive metabolomics analysis of serum and urine samples from rats treated with SE and SEP, and performed histopathological evaluation of liver, kidney and colon tissues. Meanwhile, the different metabolites were visualized through multivariate statistical analysis and the HMDB and KEGG databases were used to distinguish the differential metabolites of SE and SEP to reveal related metabolic pathways and their significance. In total, 32 potential biomarkers, 14 in serum and 18 in urine, were identified. The metabolic pathway analysis revealed that arachidonic acid metabolism, sphingolipid metabolism, tyrosine and tryptophan biosynthesis, the tricarboxylic acid cycle and seven other metabolic pathways were significantly altered. Importantly, compared with SE, SEP reduced the metabolic disorder related to endogenous components. The mechanism may be related to the regulation of lipid metabolism, intestinal flora metabolites, amino acid metabolism and energy metabolism. This study provided new insights into the possible mechanism of SE freezing and attenuation.  相似文献   

6.
Fumarase catalyzes the interconversion of fumarate and l ‐malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased levels of fumarate, decreased levels of malate and exacerbated salt‐induced hypertension. To gain insights into the metabolism profiles induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC–MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient human umbilical vein endothelial cells (HUVEC) and negative controls. A total of 24 altered metabolites involved in seven metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, l ‐malic acid, l ‐aspartic acid, glycine and l ‐glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. Alanine aminotransferase and glutamate dehydrogenase activities increased significantly in fumarase deficiency HUVEC. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level.  相似文献   

7.
Lung cancer shows the highest incidence rate in the world. Thus, it has become increasingly important to find therapeutic drugs to treat lung cancer. Farfarae Flos (FF) has been used in traditional Chinese medicine to treat pulmonary diseases such as cough, bronchitis and asthmatic disorders. In this study, the anti-proliferation effects of petroleum extracts of FF (PEFF) on Lewis lung cancer cells and the corresponding mechanisms were studied using cell metabolomics. Fifteen differential metabolites in the cell extracts and the corresponding medium related to the anti-proliferation effect of PEFF were identified, which were probably involved in pyruvate metabolism and glycine, serine and threonine metabolism. For the cellular uptake compounds in PEFF, six metabolites derived from two prototype compounds were also tentatively identified by UHPLC-Q-Orbitrap high-resolution MS. Network pharmacology analysis demonstrated that the anti-proliferation mechanism of PEFF was also probably related to the target genes, including, Aurora-A, glutathione S-transferase Mu 1 (GSTM1), glutathione S-transferase P 1 (GSTP1), progesterone receptor and heme oxygenase-1 (HO-1), and further associated with the proteoglycans and PI3K/Akt signaling pathway. Cell metabolomics and network pharmacology analysis provided a holistic method to investigate the anti-proliferation mechanisms of PEFF. However, further studies were still needed to validate the potential target genes, pathways and active compounds in PEFF.  相似文献   

8.
Intracranial bacterial infection remains a major cause of morbidity and mortality in neurosurgical cases. Metabolomic profiling of cerebrospinal fluid (CSF) holds great promise to gain insights into the pathogenesis of central neural system (CNS) bacterial infections. In this pilot study, we analyzed the metabolites in CSF of CNS infection patients and controls in a pseudo-targeted manner, aiming at elucidating the metabolic dysregulation in response to postoperative intracranial bacterial infection of pediatric cases. Untargeted analysis uncovered 597 metabolites, and screened out 206 differential metabolites in case of infection. Targeted verification and pathway analysis filtered out the glycolysis, amino acids metabolism and purine metabolism pathways as potential pathological pathways. These perturbed pathways are involved in the infection-induced oxidative stress and immune response. Characterization of the infection-induced metabolic changes can provide robust biomarkers of CNS bacterial infection for clinical diagnosis, novel pathways for pathological investigation, and new targets for treatment.  相似文献   

9.
利用代谢组学研究大气细颗粒物的生殖毒性效应   总被引:1,自引:0,他引:1  
大气细颗粒物(PM2.5)污染已成为严峻的环境问题,探究PM2.5的毒性效应和机理变得尤为重要.本研究利用基于液相色谱/质谱的代谢组学技术,分析经PM2.5悬混液气管滴注暴露后成年雄性大鼠睾丸代谢组的全局变化,采用偏最小二乘判别分析法和非参数检验进行统计分析.结果表明,PM2.5暴露组大鼠睾丸的油提和水提代谢指纹谱均可与对照组实现准确区分,表明PM2.5暴露对大鼠睾丸的整体代谢网络产生了显著影响,最终鉴定出56个差异代谢物.通路分析显示,PM2.5暴露会引起大鼠睾丸的氨基酸和核苷酸代谢紊乱、类固醇激素代谢失衡以及脂类代谢异常,而这些重要通路可能是PM2.5生殖毒性的关键分子事件.  相似文献   

10.
Pokemon是一种转录抑制因子,能够通过影响染色质的重组或直接与抑癌基因结合而抑制抑癌基因的转录,促使肿瘤形成。该文利用基于液相色谱-质谱联用的代谢组学技术研究了Pokemon在肝癌中调控细胞代谢的作用机制。通过脂质转染,获得了Pokemon高表达的HL7702细胞,分别收集转染后不同时间点的细胞。利用基于液相色谱-质谱联用技术的代谢组学方法,分析胞内代谢物的成分。根据多元统计分析的结果选出差异显著的候选代谢物,通过数据库(METLIN和HMDB)检索、二级图谱比对进行结构解析,确证了36种代谢物。通过KEGG数据库检索发现这些代谢物主要与脂质合成相关。进一步分析发现脂质合成途径中乙酰辅酶羧化酶和脂肪酸合成酶均被激活。结果显示,Pokemon可通过激活细胞中脂质合成通路而影响细胞的代谢。  相似文献   

11.
The pathogenesis of PM2.5 was evaluated on rats in model groups using a metabonomic method by UPLC-Q-TOF-MS and 17 potential endogenous metablites were identified. The primary metabolism pathways involved pentose and glucuronate interconversions, starch and sucrose metabolism, tryptophan metabolism, tyrosine metabolism, phenylalanine metabolism, purine metabolism, acetaminophen metabolism pathway, retinol metabolism and valproic acid metabolism pathway.  相似文献   

12.
Hypertension is a common chronic disease, and it is the strongest risk factor for cardiovascular disease. Recently, the number of patients with hypertension‐related complications has increased significantly, adding a heavy burden to the public health system. It is known that chronic stress plays an important role in the pathogenesis of cardiovascular diseases such as hypertension and stroke. However, the impact of hypertension on the dysfunctions induced by chronic stress remains poorly understood. In this study, using LC–MS‐based metabolomics, we established a chronic stress model to demonstrate the mechanisms of stress‐induced hypertension. We found that 30 metabolites in chronically stressed rats were changed; of these metabolites, seven had been upregulated, and 23 had been downregulated, including amino acids, phospholipids, carnitines and fatty acids, many of which are involved in amino acid metabolism, cell membrane injury, ATP supply and inflammation. These metabolites are engaged in dysregulated pathways and will provide a targeted approach to study the mechanism of stress‐induced hypertension.  相似文献   

13.
In plants, flowering is a major biological phenomenon, which is regulated by an array of interactions occurring between biotic and abiotic factors. In our study, we have compared the expression profiles of flowering genes involved in the flowering pathway, which are influenced by conditions like photoperiod and temperature from seedling to heading developmental stages in two Oryza sativa indica varieties, viz., Zhenshan 97 and Minghui 63 using a expression network approach. Using the network expression approach, we found 17 co-expressed genes having the same expression profile pattern as three key photoperiod flowering genes Hd1, Ehd1 and Hd3a. We also demonstrated that these three co-expressed genes have a similar simulation pattern as temperature flowering genes. Based on our observations, we hypothesize that photoperiod and temperature regulate flowering pathways independently. The present study provides a basis for understanding the network of co-expressed genes involved in flowering pathway and presents a way to demonstrate the behavior of specific gene sets in specific cultivars.  相似文献   

14.
In this study, we focused on studying the changes in urine metabolites in hyperlipidemic rats using ultra-performance liquid chromatography coupled with quadrupole time-of-fight mass spectrometry (UPLC–Q-TOF/MS) and metabolomics, as well as the effect of Citri Reticulatae Chachiensis Pericarpium (CRCP) on hyperlipidemia. These urine samples were examined by UPLC–Q-TOF/MS to obtain MS data. The MS data were analyzed by principal component analysis and partial least squares-discriminant analysis to identify the differential metabolites. CRCP reduced the body weight and levels of triglycerides, total cholesterol and low-density lipoprotein cholesterol and abnormally decreased high-density lipoprotein cholesterol in hyperlipidemic rats, which were significantly raised by a high-fat diet. Twenty-seven potential biomarkers were identified within the complex sample matrix of urine. Fourteen biomarkers increased in the hyperlipidemia rats compared with normal rats. Meanwhile, 13 biomarkers decreased. CRCP reversed abnormal changes in biomarkers, including 5-l -glutamyl-taurine, 5-aminopentanoic acid, cis-4-octenedioic acid and 2-octenedioic acid. These biomarkers show that hyperlipidemia is related to the metabolic pathways of taurine and hypotaurine metabolism, fatty acid biosynthesis , and arginine and proline metabolism . CRCP mainly prevents hyperlipidemia by intervening in these metabolic pathways.  相似文献   

15.
Systemic lupus erythematosus (SLE) is an autoimmune disease with heterogeneous organ and system manifestations. In this study, urinary metabolic alterations related to SLE were investigated by performing gas chromatography/mass spectrometry (GC/MS) based metabolomics and multivariate statistical analysis. Patients with SLE and healthy controls could be clearly differentiated in view of the metabolic abnormity in urine. Among 70 identified endogenous metabolites, 23 metabolites were dramatically increased in SLE patients, which involved in several key metabolic pathways including energy metabolism, nucleotide metabolism, oxidative stress and gut‐microbiome‐derived metabolism. This noninvasive and GC/MS‐based metabolomic technique is a promising and potent strategy for identifying novel biomarkers and understanding pathogenesis of SLE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
颜敏  刘静  夏天  许国旺  朴海龙 《色谱》2019,37(8):887-896
散斑型BTB/POZ蛋白(SPOP)是前列腺癌中突变率最高的蛋白质之一。该研究通过整合细胞蛋白质组学和代谢组学的方法,揭示SPOP突变引起的代谢紊乱及其调控的代谢通路。首先,系统地研究了LNCaP SPOP野生型及突变型高表达细胞中的代谢变化。代谢组学结果显示,SPOP野生型和突变型(SPOP_Y87N和SPOP_F133L)导入的LNCaP细胞在偏最小二乘法判别分析(PLS-DA)得分图上得到了很好的区分。进一步通过单因素方差分析发现,SPOP突变引起富马酸、苹果酸、柠檬酸、天冬氨酸和天冬酰胺等代谢物含量的增加。蛋白质组学共发现909种蛋白质在两种LNCaP SPOP突变体细胞中发生变化。分别对差异代谢物和差异蛋白质进行通路富集分析,发现三羧酸循环、氨酰基-转运核糖核酸生物合成在代谢组学和蛋白质组学分析中都发生了明显改变。最后,在SPOP敲除的Du145细胞中验证了上述研究结果。该研究证明SPOP突变可促进三羧酸循环。  相似文献   

17.
(1) Background: Scutellaria baicalensis (Huang Qin) is a traditional Chinese Medicine possess beneficial effects of anti-inflammation in various diseases. In this study, we aimed to use untargeted metabolomics approach to investigate the possible underlying metabolic mechanisms of anti-inflammation effects of Scutellaria baicalensis in LPS-induced macrophages.; (2) Methods: Scutellaria baicalensis water extract (SBE) were applied to the THP-1 cells which were induced by phorbol 12-myristate 13-acetate (PMA) into macrophages under the LPS treated conditions. The cell lysate were collected and metabolites were extracted before characterizing by ultra-performance liquid chromatography (UPLC) combined with Q-Exactive mass/mass spectrometry (LC-MS/MS). The differential accumulated metabolites and related metabolism pathways affected by SBE in LPS-induced macrophages were identified. Further investigation of the secretion and expression of inflammatory cytokines IL-1β, TNF-ɑ and VEGFR were tested by real-time polymerase chain reaction (RT-PCR). (3) Results: The metabolome profile have indicated that retinol metabolism, arachidonic acid metabolism and linoleic acid metaoblism pathways were the most significantly enriched pathways response to SBE in LPS induced inflammatory model. Besides, SBE could inhibit the expression of the pro-inflammatory cytokines IL-1β and TNF-ɑ, and downregulation of the macrophage migration accelerator VEGFR1 in a dose dependent manner; (4) Conclusions: These findings indicated that SBE may exerted anti-inflammatory ability by regulating multiple fatty acids metabolism pathways as well as inhibiting the secretion of pro-inflammatory cytokines and VEGFR. This study provides evidences for Scutellaria baicalensis as the material for developing natural, effective anti-inflammatory products.  相似文献   

18.
禹伟  高教琪  周雍进 《色谱》2019,37(8):798-805
构建微生物细胞工厂是化学品、生物能源以及药物分子可持续生产的可行性策略。然而,微生物的代谢复杂、调控严谨,制约着目标产物高效合成。蛋白质组学和代谢组学可以从系统生物学角度分析酶和代谢物组分,从而理解复杂的生物系统,为微生物代谢工程改造提供重要线索。该文介绍了蛋白质组学和代谢组学在微生物代谢工程中的应用,包括基因组尺度代谢模型构建、菌株生物合成优化、指导菌株耐受性改造、限速步骤预测、植物次级代谢途径挖掘,从而为微生物合成天然产物提供新的基因或途径。在此基础上,该文还展望了生物大数据未来的发展方向。  相似文献   

19.
Dandelion extract exhibits potential anticancer activity and is expected to be a new type of natural anticancer drug. However, the effect mechanism of dandelion extract to lung cancer cells is still unclear. Here, untargeted metabolomics approach based on LC–MS was used to characterize the metabolic responses of A549 cells to dandelion extract exposure and to provide new clues for the antitumor mechanism of dandelion extract from the metabolomics perspective. A total of 16 differentially expressed and time-related metabolites were identified between dandelion extract exposure and control groups. The perturbed metabolic pathways of A549 cells after dandelion extract exposure mainly include the glycerophospholipid metabolism and purine metabolism. These results concluded that dandelion extract may exert anticancer activity by affecting malignant proliferation, disturbing the stability of cell membrane structure, reducing the adhesion of tumor cells to extracellular matrix and fibronectin, and finally inducing tumor cell death.  相似文献   

20.
Traditional Chinese medicine targeted at gut microbiota has good effects in relieving the clinical manifestation of Alzheimer's disease, and intestinal metabolites are considered as a bridge of communication between the brain-gut axis. In order to explore the molecular mechanism of Ganmaidazao decoction treatment, first, the model rats induced by Aβ25-35 and d-gal were used to test the therapy of Ganmaidazao extract using the Morris Water Maze, Western Blot and Elisa. Then the 16S rDNA gene sequencing of the gut microbiota as well as UPLC-QTOF/MS-based metabolomic analysis of feces were carried out. Last, the relationship between Alzheimer's disease, gut microbiota and metabolites was analyzed. Results showed that the abundance and diversity of gut microbiota were rescued and the changes of fecal metabolites in rats with Alzheimer's disease were reversed after Ganmaidazao decoction administration, which were mainly related to lipid metabolism, steroid hormone metabolism, energy metabolism, amino acid metabolism and bile acid metabolism. After associating with Spearman’s correlation analysis, we concluded that gut microbiota and metabolites were closely related and Ganmaidazao decoction could interfere with the balance of gut microbiota and their corresponding metabolites to exert anti- Alzheimer’s disease effect. Combined with PICRUSt2 functional prediction of gut microbiota and metabolomics results, phenylalanine metabolism has been focused as a key metabolic pathway, and Ganmaidazao decoction can reduce the abnormal accumulation of phenylalanine and phenylpyruvate and promote their metabolism by restoring the activity of phenylalanine hydroxylase. This integrated omics approach has potential roles in understanding the complex mechanisms of Ganmaidazao decoction in treating Alzheimer’s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号