首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability.  相似文献   

2.
Silicon nanoparticles (NPs) serve a wide range of optical, electronic, and biological applications. Chemical grafting of various molecules to Si NPs can help to passivate their reactive surfaces, “fine‐tune” their properties, or even give them further interesting features. In this work, 1H, 13C, and 29Si solid‐state NMR spectroscopy has been combined with density functional theory calculations to study the surface chemistry of hydride‐terminated and alkyl‐functionalized Si NPs. This combination of techniques yields assignments for the observed chemical shifts, including the contributions resulting from different surface planes, and highlights the presence of physisorbed water. Resonances from near‐surface 13C nuclei were shown to be substantially broadened due to surface disorder and it is demonstrated that in an ambient environment hydride‐terminated Si NPs undergo fast back‐bond oxidation, whereas long‐chain alkyl‐functionalized Si NPs undergo slow oxidation. Furthermore, the combination of NMR spectroscopy and DFT calculations showed that the employed hydrosilylation reaction involves anti‐Markovnikov addition of the 1‐alkene to the surface of the Si NPs.  相似文献   

3.
选用四种不同的密度泛函理论方法(B3LYP,BLYP,BP86,B3P86),在全电子的双ζ加极化加弥散函数基组(DZP++)下,研究Sin/Si-n (n=2 -6 )体系的结构和电子亲合能.预测Si2 /Si-2 ,Si3 /Si-3 ,Si4 /Si-4 ,Si5 /Si-5 和Si6 /Si-6 的基态结构分别为C∞h(3Σ-g ) /C∞h(2Σ+g ),D3h(3A′2 ) /C2υ(2A1 ),D2h(1Ag) /D2h(2B2g),D3h(1A′1 ) /D3h(2A″2 )和C2υ(1A1 ) /D4h(2A2u).在电子亲合能方面,B3LYP方法预测的电子亲合能是最可靠的.预测Si2,Si3,Si4,Si5和Si6的电子亲合能分别为 2. 05, 2. 34, 2. 16, 2. 48和 2. 13eV.  相似文献   

4.
The systematic assembly of supramolecular arrangements is a persistent challenge in modern coordination chemistry, especially where further aspects of complexity are concerned, as in the case of large molecular mixed-metal arrangements. One targeted approach to such heterometallic complexes is to engineer metal-based donor ligands of the correct geometry to build 3D arrangements upon coordination to other metals. This simple idea has, however, only rarely been applied to main group metal-based ligand systems. Here, we show that the new, bench-stable tris(3-pyridyl)stannane ligand PhSn(3-Py)3 (3-Py=3-pyridyl) provides simple access to a range of heterometallic SnIV/transition metal complexes, and that the presence of weakly coordinating counter anions can be used to build discrete molecular arrangements involving anion encapsulation. This work therefore provides a building strategy in this area, which parallels that of supramolecular transition metal chemistry.  相似文献   

5.
Compact and highly reactive bicyclo[1.1.0]butanes constitute one of the most fascinating classes of organic compounds. Furthermore, interplay of bicyclo[1.1.0]butanes with their valence isomers, such as buta‐1,3‐dienes and cyclobutenes, is among the fundamental pericyclic transformations in organic chemistry. Herein we report the back‐and‐forth interconversion between the cyclotrisilenes and thiatrisilabicyclo[1.1.0]butanes, allowing for the synthesis of novel representatives of such classes of highly reactive organometallics. The peculiar structural and bonding features of the newly synthesized compounds, as well as the mechanism of their isomerization, were verified both experimentally and computationally.  相似文献   

6.
7.
Oxoborane carbamate and carboxylate analogues result from the in situ trapping of [BO2]? produced by elimination of 2,3‐dimethyl‐2‐butene from a pinacolatoboryl anion.  相似文献   

8.
The ability to use calculated OH frequencies to assign experimentally observed peaks in hydrogen bonded systems hinges on the accuracy of the calculation. Here we test the ability of several commonly employed model chemistries—HF, MP2, and several density functionals paired with the 6‐31+G(d) and 6‐311++G(d,p) basis sets—to calculate the interaction energy (De) and shift in OH stretch fundamental frequency on dimerization (δ(ν)) for the H2O → H2O, CH3OH → H2O, and H2O → CH3OH dimers (where for XY, X is the hydrogen bond donor and Y the acceptor). We quantify the error in De and δ(ν) by comparison to experiment and high level calculation and, using a simple model, evaluate how error in De propagates to δ(ν). We find that B3LYP and MPWB1K perform best of the density functional methods studied, that their accuracy in calculating δ(ν) is ≈ 30–50 cm?1 and that correcting for error in De does little to heighten agreement between the calculated and experimental δ(ν). Accuracy of calculated δ(ν) is also shown to vary as a function of hydrogen bond donor: while the PBE and TPSS functionals perform best in the calculation of δ(ν) for the CH3OH → H2O dimer their performance is relatively poor in describing H2O → H2O and H2O → CH3OH. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

9.
The proton affinities, gas phase basicities and ionization energies of formic acid, acetic acid, propanoic acid, 2‐propenoic acid, propiolic acid, butanoic acid, 2‐butenoic acid, 3‐botenoic acid, 2‐methyl‐propanoic acid and 2‐methyl‐2‐propenoic acid were calculated using the computational methods including B3LYP/6‐311++G(2df,p), CBS‐Q and G4MP2. Also, the considered properties were calculated using W1BD method only for formic and acetic acids. In addition, the electron affinities of the acids were calculated using B3LYP, CBS‐Q, G4MP2 and G2MP2 methods, separately. The calculations showed that the PA and gas phase basicity increase with the increase in the number of carbon atoms. The calculated Ionization energies of the unsaturated carboxylic acids are less than the corresponding saturated acids, which are in good agreement with the experimental results. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Halogen bonding is a noncovalent interaction between a halogen atom and a nucleophilic site. Interactions involving the π electrons of aromatic rings have received, up to now, little attention, despite the large number of systems in which they are present. We report binding energies of the interaction between either NCX or PhX (X=F, Cl, Br, I) and the aromatic benzene system as determined with the coupled cluster with perturbative triple excitations method [CCSD(T)] extrapolated at the complete basis set limit. Results are compared with those obtained by Møller–Plesset perturbation theory to second order (MP2) and density functional theory (DFT) calculations by using some of the most common functionals. Results show the important role of DFT in studying this interaction.  相似文献   

11.
We present a systematic theoretical study of the five smallest oligoacenes (naphthalene, anthracene, tetracene, pentacene, and hexacene) in their anionic, neutral, cationic, and dicationic charge states. We used density functional theory (DFT) to obtain the ground-state optimised geometries, and time-dependent DFT (TD-DFT) to evaluate the electronic absorption spectra. Total-energy differences enabled us to evaluate the electron affinities and first and second ionisation energies, the quasiparticle correction to the HOMO–LUMO energy gap and an estimate of the excitonic effects in the neutral molecules. Electronic absorption spectra have been computed by combining two different implementations of TD-DFT: the frequency–space method to study general trends as a function of charge-state and molecular size for the lowest-lying in-plane long-polarised and short-polarised π → π* electronic transitions, and the real-time propagation scheme to obtain the whole photo-absorption cross-section up to the far-UV. Doubly ionised PAHs are found to display strong electronic transitions of π → π* character in the near-IR, visible, and near-UV spectral ranges, like their singly charged counterparts. While, as expected, the broad plasmon-like structure with its maximum at about 17–18 eV is relatively insensitive to the charge-state of the molecule, a systematic decrease with increasing positive charge of the absorption cross-section between 6 and 12 eV is observed for each member of the class.  相似文献   

12.
Cyclotricatechylene (ctcH6) is a bowl‐shaped macrocyclic compound that can be used as a building block for self‐assembled capsules. ctcH6 and its derivatives in various protonation states – here collectively labeled as CTC – form dimers that resemble the shape of a clam. These clam‐shaped entities have been studied experimentally by Abrahams, Robson, and co‐workers [B. F. Abrahams, N. J. FitzGerald, T. A. Hudson, R. Robson and T. Waters, Angew. Chem. Int. Ed. 2009 , 48, 3129–3132] where the capsules acted as an excellent host for large alkali‐metal cations. In this study, we present a detailed analysis based on accurate dispersion‐corrected Density Functional Theory approaches that reveals the factors that stabilise such CTC‐based capsules at different protonation states and their interaction with various encapsulated guests. Our results show that the capsules’ overall stability results as an interplay of hydrogen bonding, London dispersion, and electrostatic effects. The most stable capsules with group‐1 and group‐2 cations as guests contain only six phenolic hydrogens, as opposed to the maximum possible number of twelve. Inclusion of larger alkali‐metal cations is favoured due to larger London‐dispersion contributions. Cations are favoured as guests over isoelectronic neutral species, as the resulting host‐guest complexes experience additional stability due to cooperative effects. In fact, using the latter to drive the formation of specific capsules could be used in future strategies aimed at synthesising similar aggregates; our results provide an insightful understanding and useful guidance for such future endeavours.  相似文献   

13.
New p‐type, n‐type, and ambipolar molecules were synthesized from commercially available 4,10‐dibromoanthanthrone dye. Substitution at the 4,10‐ and 6,12‐positions with different electron‐rich and electron‐poor units allowed the modulation of the optoelectronic properties of the molecules. A bis(dicyanovinylene)‐functionalized compound was also prepared with a reduction potential as low as ?50 mV versus Ag+ with a crystalline two‐dimensional lamellar packing arrangement. These characteristics are important prerequisites for air‐stable n‐type organic field‐effect transistor applications.  相似文献   

14.
The transition from 2D to 3D structures in small gold clusters occurs around 10 atoms. Density functional theory predicts a planar structure for in contrast to recent second‐order Møller–Plesset perturbation theory calculations, which predict a 3D arrangement. The validity of the use of single‐reference second‐order Møller–Plesset theory for near metallic systems remains, however, questionable. On the other hand, it is less than clear how well density functional approximations perform for such clusters. We, therefore, decided to carry out quantum chemical calculations for using a variety of different density functionals as well as wavefunction‐based methods including coupled cluster theory to compare the different energetically low lying 2D and 3D cluster isomers. The results are perhaps not encouraging showing that most computational methods do not predict correctly the energetic sequence of isomers compared to coupled cluster theory. As perturbative triple corrections in the coupled cluster treatment change the order in cluster stability, the onset of 2D to 3D transition in these gold clusters remains elusive. As expected, second‐order Møller–Plesset theory is not suitable for correctly describing such systems.  相似文献   

15.
Reaction of the PH2‐transfer reagent Si(PH2)4 ( 1 ) with SiCl4 affords a mixture of the ClnSi(PH2)4–n compounds ( 2 a , n = 1), ( 2 b , n = 2), and ( 2 c , n = 3) which were characterized by 1H‐31P‐COSY NMR spectroscopy. The formation of ( 2 a ) is drastically accelerated by using GeCl4 instead of SiCl4 as PH2 acceptor, but a stable molecular GeCl4–n(PH2)n containing product could not be obtained. In contrast, conversion of (C6F5)3GeCl with Si(PH2)4 ( 1 ) furnishes 2 a but also the remarkably stable tris(pentafluorophenyl)phosphaneylgermane ( 3 ). The latter is isolated in the form of colorless crystals in 97% yield and represents the first PH2‐substituted germane being structurally characterized by single‐crystal X‐ray diffraction. Protolysis of 1 with MeOH and PhOH occurs relatively fast and leads to mixtures of compounds of the type (RO)nSi(PH2)4–n ( 4 , n = 1), ( 5 , n = 2), and ( 6 , n = 3). The sterically congested phenols MesOH and 3,5‐Me2PhOH react with 1 only to the respective mono‐ and disubstituted silylphosphanes ( 4 c , d ) and ( 5 c , d ), respectively; 4 c and 4 d were isolated by fractional condensation in the form of air‐ and moisture‐sensitive oils. Lithiation of 1 with four molar equiv. of LiNiPr2 in THF/Et2O at –80 °C, surprisingly, leads to insoluble Si(PHLi)4 ( 8 a ) which was tetrasilylated with iPr3SiOSO2CF3, affording the tetrakis(triisopropylsilylphosphaneyl)silane ( 8 b ). However, attempts to achieve the tetralithiation of the P atoms in 8 b through reaction with four molar equiv. BuLi leads to the unexpected cluster formation of butyl‐tris[lithium(triisopropylsilyl)phosphanideyl] silane‐dimer ( 9 ) in 30% yield and LiPHSiiPr3; compound 9 consists of a Li6P6Si2 cluster framework.  相似文献   

16.
A systematic investigation on the H‐abstraction reactions of 8 carbene radical anions with CCl3H has been performed theoretically using the popular DFT functional BHandHLYP/aug‐cc‐pVTZ/RECP level of theory. As a result, our studies strongly suggest that the reactivity of the title reactions (CX1X2 ?? + CCl3H) present increase in the order: CHI ?? < CHBr ?? < CHCl ?? < CHF ?? for first halogen CHX ?? and CCI2 ?? < CBr2 ?? < CCl2 ?? < CF2 ?? for second halogen CX2 ?? , more important, the reactions of the former exhibit more activity than those of corresponding the latter. Moreover, based on the NBO analysis, the Activation Strain model analysis and the correlations analyses of activation barrier with both PA and IE, respectively, we further confirm over the conclusion. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
The Si(111)2 × 1 surface has been widely studied via a range of different experimental and theoretical techniques, and found to adopt a π‐bonded chain configuration. To determine an accurate electronic structure for this system, however, it has been found necessary to use sophisticated and very computationally expensive methods such as GW or hybrid functionals. In this article, we show that the MBJLDA approach, originally proposed by Tran and Blaha for bulk materials (Tran and Blaha, Phys. Rev. Lett. 2009, 102, 226401), yields results which are comparable to GW, and generally superior to those obtained from hybrid functional density functional theory calculations. The MBJLDA method is also substantially more computationally efficient. A procedure and justification for the application of the MBJLDA approach to surfaces in general is also provided. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
A numerically efficient yet highly accurate implementation of the crystal orbital Hamilton population (COHP) scheme for plane‐wave calculations is presented. It is based on the projector‐augmented wave (PAW) formalism in combination with norm‐conserving pseudopotentials and allows to extract chemical interactions between atoms from band‐structure calculations even for large and complex systems. The potential of the present COHP implementation is demonstrated by an in‐depth analysis of the intensively investigated metal‐insulator transition in atomic‐scale indium wires self‐assembled on the Si(111) surface. Thereby bond formation between In atoms of adjacent zigzag chains is found to be instrumental for the phase change. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
Novel Ni(II) complexes of 2‐(1H–benzimidazol‐2‐yl)‐phenol derivatives (HLx: x  =  1–5; C1–C5 ) have been synthesized and characterized. In the mononuclear complexes, the ligands were coordinated as bidentate, via one imine nitrogen and the phenolate oxygen atoms. The structures of the compounds were confirmed on the basis of FT‐IR, UV–Vis, 1H‐, 13C–NMR, inductively coupled plasma and elemental analyses (C, H and N). The purity of these compounds was ascertained by melting point (m.p.) and thin‐layer chromatography. The geometry optimization and vibrational frequency calculations of the compounds were performed using Gaussian 09 program with B3LYP/TZVP level of theory. All Ni(II) complexes were activated with diethylaluminum chloride (Et2AlCl), so that C2 showed the highest activity [6600 kg mol?1 (Ni) h?1], where the ligand contains a chlorine substituent. Oligomers obtained from the complexes consist mainly of dimer and trimer, and also exhibit high selectivity for linear 1‐butene and 1‐hexene. Both the steric and electronic effects of coordinative ligands affect the catalytic activity and the properties of the catalytic products.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号