首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus that causes severe respiratory syndrome in humans, which is now referred to as coronavirus disease 2019 (COVID-19). Since December 2019, the new pathogen has rapidly spread globally, with over 65 million cases reported to the beginning of December 2020, including over 1.5 million deaths. Unfortunately, currently, there is no specific and effective treatment for COVID-19. As SARS-CoV-2 relies on its spike proteins (S) to bind to a host cell-surface receptor angiotensin-converting enzyme-2(ACE2), and this interaction is proved to be responsible for entering a virus into host cells, it makes an ideal target for antiviral drug development. In this work, we design three very short peptides based on the ACE2 sequence/structure fragments, which may effectively bind to the receptor-binding domain (RBD) of S protein and may, in turn, disrupt the important virus-host protein–protein interactions, blocking early steps of SARS-CoV-2 infection. Two of our peptides bind to virus protein with affinity in nanomolar range, and as very short peptides have great potential for drug development.  相似文献   

2.
《印度化学会志》2021,98(3):100041
COVID-19 has affected millions of people. Although many drugs are in use to combat disease, there is not any sufficient treatment yet. Having critical role in propagation of the novel coronavirus (SARS-CoV-2) works Main Protease up into a significant drug target. We have performed a molecular docking study to define possible inhibitor candidates against SARS-CoV-2 Main Protease enzyme. Besides docking Remdesivir, Ribavirin, Chloroquine and 28 other antiviral inhibitors (totally 31 inhibitors) to Main Protease enzyme, we have also performed a molecular docking study of 2177 ligands, which are used against Main Protease for the first time by using molecular docking program Autodock4. All ligands were successfully docked into Main Protease enzyme binding site. Among all ligands, EY16 coded ligand which previously used as EBNA1-DNA binding blocker candidate showed the best score for Main Protease with a binding free energy of −10.83 ​kcal/mol which was also lower than re-docking score of N3 ligand (−10.72 ​kcal/mol) contained in crystal structure of Main Protease. After analyzing the docking modes and docking scores we have found that our ligands have better binding free energy values than the inhibitors in use of treatment. We believe that further studies such as molecular dynamics or Molecular Mechanic Poisson Boltzmann Surface Area studies can make contribution that is more exhaustive to the docking results.  相似文献   

3.
This article discusses the importance of D-xylose for fighting viruses (especially SARS-CoV-2) that use core proteins as receptors at the cell surface, by providing additional supporting facts that these viruses probably bind at HS/CS attachment sites (i.e., the hydroxyl groups of Ser/Thr residues of the core proteins intended to receive the D-xylose molecules to initiate the HS/CS chains). Essentially, the additional supporting facts, are: some anterior studies on the binding sites of exogenous heparin and soluble HS on the core proteins, the inhibition of the viral entry by pre-incubation of cells with heparin, and additionally, corroborating studies about the mechanism leading to type 2 diabetes during viral infection. We then discuss the mechanism by which serine protease inhibitors inhibit SARS-CoV-2 entry. The biosynthesis of heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (Hep) is initiated not only by D-xylose derived from uridine diphosphate (UDP)-xylose, but also bioactive D-xylose molecules, even in situations where cells were previously treated with GAG inhibitors. This property of D-xylose shown by previous anterior studies helped in the explanation of the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This explanation is completed here by a preliminary estimation of xyloside GAGs (HS/CS/DS/Hep) in the body, and with other previous studies helping to corroborate the mechanism by which the D-xylose exhibits its antiglycaemic properties and the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This paper also discusses the confirmatory studies of regarding the correlation between D-xylose and COVID-19 severity.  相似文献   

4.
COVID-19, a pandemic caused by the virus SARS-CoV-2, has spread globally, necessitating the search for antiviral compounds. Transmembrane protease serine 2 (TMPRSS2) is a cell surface protease that plays an essential role in SARS-CoV-2 infection. Therefore, researchers are searching for TMPRSS2 inhibitors that can be used for the treatment of COVID-19. As such, in this study, based on the crystal structure, we targeted the active site of TMPRSS2 for virtual screening of compounds in the FDA database. Then, we screened lumacaftor and ergotamine, which showed strong binding ability, using 100 ns molecular dynamics simulations to study the stability of the protein–ligand binding process, the flexibility of amino acid residues, and the formation of hydrogen bonds. Subsequently, we calculated the binding free energy of the protein–ligand complex by the MM-PBSA method. The results show that lumacaftor and ergotamine interact with residues around the TMPRSS2 active site, and reached equilibrium in the 100 ns molecular dynamics simulations. We think that lumacaftor and ergotamine, which we screened through in silico studies, can effectively inhibit the activity of TMPRSS2. Our findings provide a basis for subsequent in vitro experiments, having important implications for the development of effective anti-COVID-19 drugs.  相似文献   

5.
In late 2019, a global pandemic occurred. The causative agent was identified as a member of the Coronaviridae family, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we present an analysis on the substances identified in the human metabolome capable of binding the active site of the SARS-CoV-2 main protease (Mpro). The substances present in the human metabolome have both endogenous and exogenous origins. The aim of this research was to find molecules whose biochemical and toxicological profile was known that could be the starting point for the development of antiviral therapies. Our analysis revealed numerous metabolites—including xenobiotics—that bind this protease, which are essential to the lifecycle of the virus. Among these substances, silybin, a flavolignan compound and the main active component of silymarin, is particularly noteworthy. Silymarin is a standardized extract of milk thistle, Silybum marianum, and has been shown to exhibit antioxidant, hepatoprotective, antineoplastic, and antiviral activities. Our results—obtained in silico and in vitro—prove that silybin and silymarin, respectively, are able to inhibit Mpro, representing a possible food-derived natural compound that is useful as a therapeutic strategy against COVID-19.  相似文献   

6.
《印度化学会志》2021,98(12):100272
COVID-19 caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has threatened the whole world affecting almost 243 million people globally. Originating from China, it has now spread worldwide with USA and India being the two most affected countries which emphasizes the immense potential of the coronaviruses to cause severity in the human population. This study validates the efficacy of some marine antiviral agents to target the viral main protease (Mpro) of SARS-CoV-2 by in silico studies. A total of 14 marine-derived antiviral agents were screened from several databases including PubChem and DrugBank and docked against the crystallised 3D structure of SARS-CoV-2 Mpro. MD simulation of the top two ligands was carried out for 100 ns to validate the protein-ligand stability. Later, their physicochemical, pharmacokinetics, and drug-likeness properties were evaluated and toxicity prediction was performed using eMOLTOX webtool. We found that all the 14 compounds are acting as a good target for Mpro. Among them, avarol and AcDa-1 procured the best docking results with the estimated docking score of −8.05 and −7.74 ​kcal/mol respectively. MD simulation revealed good conformational stability. The docked conformation was visualised and subsequent ligand-amino acid interactions were analysed. Avarol revealed good pharmacokinetic properties with oral bioavailability. The overall finding suggested that these marine compounds may have the potential to be used for the treatment of COVID-19 to tackle this pandemic.  相似文献   

7.
The new type of coronavirus, SARS-CoV-2 has affected more than 22.6 million people worldwide. Since the first day the virus was spotted in Wuhan, China, numerous drug design studies have been conducted all over the globe. Most of these studies target the receptor-binding domain of spike protein of SARS-CoV-2, which is known to bind to the human ACE2 receptor and SARS-CoV-2 main protease, vital for the virus’ replication. However, there might be a third target, human furin protease, which cleaves the virus’ S1-S2 domains playing an active role in its entry into the host cell. In this study, we docked five clinically used drug molecules, favipiravir, hydroxychloroquine, remdesivir, lopinavir, and ritonavir onto three target proteins, the receptor-binding domain of SARS-CoV-2 spike protein, SARS-CoV-2 main protease, and human furin protease. Results of molecular docking simulations revealed that human furin protease might be targeted by COVID-19. Remdesivir, a nucleic acid derivative, strongly bound to the active site of this protease, suggesting that this molecule can be used as a template for designing novel furin protease inhibitors to fight against the disease. Protein-drug interactions revealed in this study at the molecular level, can pave the way for better drug design for each specific target.  相似文献   

8.
Siddha medicine is one of the oldest medical systems in the world and is believed to have originated more than 10,000 years ago and is prevalent across ancient Tamil land. It is undeniable that inhibitor preferences rise with increasing solubility in water due to the considerations pertaining to the bioavailability and the ease of which unabsorbed residues can be disposed of. In this study, we showed the phytochemical discrimination of Saussurea costus extracted with water at room temperature as a green extraction procedure. A total of 48 compounds were identified using gas chromatography-mass spectrometry (GC-MS). The fatty acids had a high phytochemical abundance at 73.8%, followed by tannins at 8.2%, carbohydrates at 6.9%, terpenoids at 4.3%, carboxylic acids at 2.5%, hydrocarbons at 2.4%, phenolic compounds at 0.2%, and sterols at 1.5%. Of these compounds, 22 were docked on the active side and on the catalytic dyad of His41 and Cys145 of the main protease of SARS-CoV-2 (Mpro). Eight active inhibitors were carbohydrates, five were fatty acids, three were terpenoids, two were carboxylic acids, one was a tannin, one was a phenolic compound, and one was a sterol. The best inhibitors were 4,8,13-Cyclotetradecatriene-1,3-diol, 1,5,9-trimethyl-12-(1-methylethyl), Andrographolide, and delta.4-Androstene-3.beta.,17.beta.-diol, with a binding affinity that ranged from −6.1 kcal/mol to −6.5 kcal/mol. The inhibitory effect of Saussurea costus of SARS-CoV-2 entry into the cell was studied using a pseudovirus with Spike proteins from the D614G variant and the VOC variants Gamma and Delta. Based on the viral cycle of SARS-CoV-2, our results suggest that the Saussurea costus aqueous extract has no virucidal effect and inhibits the virus in the events after cell entry. Furthermore, the biological activity of the aqueous extract was investigated against HSV-1 virus and two bacterial strains, namely Staphylococcus aureus ATCC BAA 1026 and Escherichia coli ATCC 9637. According to this study, an enormous number of water-soluble inhibitors were identified from Saussurea costus against the Mpro, and this is unprecedented as far as we know.  相似文献   

9.
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the “COVID-19” disease that has been declared by WHO as a global emergency. The pandemic, which emerged in China and widespread all over the world, has no specific treatment till now. The reported antiviral activities of isoflavonoids encouraged us to find out its in silico anti-SARS-CoV-2 activity. In this work, molecular docking studies were carried out to investigate the interaction of fifty-nine isoflavonoids against hACE2 and viral Mpro. Several other in silico studies including physicochemical properties, ADMET and toxicity have been preceded. The results revealed that the examined isoflavonoids bound perfectly the hACE-2 with free binding energies ranging from −24.02 to −39.33 kcal mol−1, compared to the co-crystallized ligand (−21.39 kcal mol–1). Furthermore, such compounds bound the Mpro with unique binding modes showing free binding energies ranging from −32.19 to −50.79 kcal mol–1, comparing to the co-crystallized ligand (binding energy = −62.84 kcal mol–1). Compounds 33 and 56 showed the most acceptable affinities against hACE2. Compounds 30 and 53 showed the best docking results against Mpro. In silico ADMET studies suggest that most compounds possess drug-likeness properties.  相似文献   

10.
A new flavonoid, Jusanin, (1) has been isolated from the aerial parts of Artemisia commutata. The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2′,4′-trihydroxy-6,7,5′-trimethoxyflavone. Being new in nature, the inhibition potential of 1 has been estimated against SARS-CoV-2 using different in silico techniques. Firstly, molecular similarity and fingerprint studies have been conducted for Jusanin against co-crystallized ligands of eight different SARS-CoV-2 essential proteins. The studies indicated the similarity between 1 and X77, the co-crystallized ligand SARS-CoV-2 main protease (PDB ID: 6W63). To confirm the obtained results, a DFT study was carried out and indicated the similarity of (total energy, HOMO, LUMO, gap energy, and dipole moment) between 1 and X77. Accordingly, molecular docking studies of 1 against the target enzyme have been achieved and showed that 1 bonded correctly in the protein’s active site with a binding energy of −19.54 Kcal/mol. Additionally, in silico ADMET in addition to the toxicity evaluation of Jusanin against seven models have been preceded and indicated the general safety and the likeness of Jusanin to be a drug. Finally, molecular dynamics simulation studies were applied to investigate the dynamic behavior of the Mpro-Jusanin complex and confirmed the correct binding at 100 ns. In addition to 1, three other metabolites have been isolated and identified to be сapillartemisin A (2), methyl-3-[S-hydroxyprenyl]-cumarate (3), and β-sitosterol (4).  相似文献   

11.
The COVID-19 pandemic, caused by the rapidly spreading SARS-CoV-2 virus, led to the unprecedented mobilization of scientists, resulting in the rapid development of vaccines and potential pharmaceuticals. Although COVID-19 symptoms are moderately severe in most people, in some cases the disease can result in pneumonia and acute respiratory failure as well as can be fatal. The severe course of COVID-19 is associated with a hyperinflammatory state called a cytokine storm. One of the key cytokines creating a proinflammatory environment is IL-6, which is secreted mainly by monocytes and macrophages. Therefore, this cytokine has become a target for some therapies that inhibit its biological action; however, these therapies are expensive, and their availability is limited in poorer countries. Thus, new cheaper drugs that can overcome the severe infections of COVID-19 are needed. Here, we show that chlorpromazine inhibits the expression and secretion of IL-6 by monocytes activated by SARS-CoV-2 virus nucleocapsid protein and affects the activity of NF-κB and MEK/ERK signaling. Our results, including others, indicate that chlorpromazine, which has been used for several decades as a neuroleptic, exerts antiviral and immunomodulatory activity, is safe and inexpensive, and might be a desirable drug to support the therapy of patients with COVID-19.  相似文献   

12.
In this ongoing theme of coronavirus disease 2019 (COVID-19) pandemic, highly sensitive analytical testing platforms are extremely necessary to detect SARS-CoV-2 RNA and antiviral antibodies. To limit the viral spread, prompt and precise diagnosis is crucial to facilitate treatment and ensure effective isolation. Accurate detection of antibodies (IgG and IgM) is imperative to understand the prevalence of SARS-CoV-2 in public and to inspect the proportion of immune individuals. In this review, we demonstrate and evaluate some tests that have been used commonly to detect SARS-CoV-2. These include nucleic acid and serological tests for the detection of SARS-CoV-2 RNA and specific antibodies in infected people. Moreover, the vitality of biosensing technologies emphasizing on optical and electrochemical biosensors toward the detection of SARS-CoV-2 has also been discussed here. The early diagnosis of COVID-19 based on detection of reactive oxygen species overproduction because of virus-induced dysfunctioning of lung cells has also been highlighted.  相似文献   

13.
The efficacy of aprotinin combinations with selected antiviral-drugs treatment of influenza virus and coronavirus (SARS-CoV-2) infection was studied in mice models of influenza pneumonia and COVID-19. The high efficacy of the combinations in reducing virus titer in lungs and body weight loss and in increasing the survival rate were demonstrated. This preclinical study can be considered a confirmatory step before introducing the combinations into clinical assessment.  相似文献   

14.
This work describes an untargeted analytical approach for the screening, identification, and characterization of the trans-epithelial transport of green tea (Camellia sinensis) catechin extracts with in vitro inhibitory effect against the SARS-CoV-2 papain-like protease (PLpro) activity. After specific catechin extraction, a chromatographic separation obtained six fractions were carried out. The fractions were assessed in vitro against the PLpro target. Fraction 5 showed the highest inhibitory activity against the SARS-CoV-2 PLpro (IC50 of 0.125 μg mL−1). The untargeted characterization revealed that (−)-epicatechin-3-gallate (ECG) was the most abundant compound in the fraction and the primary molecule absorbed by differentiated Caco-2 cells. Results indicated that fraction 5 was approximately 10 times more active than ECG (IC50 value equal to 11.62 ± 0.47 μg mL−1) to inhibit the PLpro target. Overall, our findings highlight the synergistic effects of the various components of the crude extract compared to isolated ECG.  相似文献   

15.
COVID-19 is a pandemic disease caused by the SARS-CoV-2 virus, which is potentially fatal for vulnerable individuals. Disease management represents a challenge for many countries, given the shortage of medicines and hospital resources. The objective of this work was to review the medicinal plants, foods and natural products showing scientific evidence for host protection against various types of coronaviruses, with a focus on SARS-CoV-2. Natural products that mitigate the symptoms caused by various coronaviruses are also presented. Particular attention was placed on natural products that stabilize the Renin–Angiotensin–Aldosterone System (RAAS), which has been associated with the entry of the SARS-CoV-2 into human cells.  相似文献   

16.
A new dicoumarin, jusan coumarin, (1), has been isolated from Artemisia glauca aerial parts. The chemical structure of jusan coumarin was estimated, by 1D, 2D NMR as well as HR-Ms spectroscopic methods, to be 7-hydroxy-6-methoxy-3-[(2-oxo-2H-chromen-6-yl)oxy]-2H-chromen-2-one. As the first time to be introduced in nature, its potential against SARS-CoV-2 has been estimated using various in silico methods. Molecular similarity and fingerprints experiments have been utilized for 1 against nine co-crystallized ligands of COVID-19 vital proteins. The results declared a great similarity between Jusan Coumarin and X77, the ligand of COVID-19 main protease (PDB ID: 6W63), Mpro. To authenticate the obtained outputs, a DFT experiment was achieved to confirm the similarity of X77 and 1. Consequently, 1 was docked against Mpro. The results clarified that 1 bonded in a correct way inside Mpro active site, with a binding energy of −18.45 kcal/mol. Furthermore, the ADMET and toxicity profiles of 1 were evaluated and showed the safety of 1 and its likeness to be a drug. Finally, to confirm the binding and understand the thermodynamic characters between 1 and Mpro, several molecular dynamics (MD) simulations studies have been administered. Additionally, the known coumarin derivative, 7-isopentenyloxycoumarin (2), has been isolated as well as β-sitosterol (3).  相似文献   

17.
The presently ongoing pandemic of human SARS-CoV-2 infections (COVID-19) presents an enormous challenge in surveillance, vaccine and antiviral drug development. Here we report the synthesis of new bioactive quinoline-morpholine hybrid compounds and their virological evaluation, which proves pronounced cell culture-based inhibitory profile against SARS-CoV-2. Thus, selected quinoline compounds may suggest specific hit-to-lead development.  相似文献   

18.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), was first identified in Eastern Asia (Wuhan, China) in December 2019. The virus then spread to Europe and across all continents where it has led to higher mortality and morbidity, and was declared as a pandemic by the World Health Organization (WHO) in March 2020. Recently, different vaccines have been produced and seem to be more or less effective in protecting from COVID-19. The renin–angiotensin system (RAS), an essential enzymatic cascade involved in maintaining blood pressure and electrolyte balance, is involved in the pathogenicity of COVID-19, since the angiotensin-converting enzyme II (ACE2) acts as the cellular receptor for SARS-CoV-2 in many human tissues and organs. In fact, the viral entrance promotes a downregulation of ACE2 followed by RAS balance dysregulation and an overactivation of the angiotensin II (Ang II)–angiotensin II type I receptor (AT1R) axis, which is characterized by a strong vasoconstriction and the induction of the profibrotic, proapoptotic and proinflammatory signalizations in the lungs and other organs. This mechanism features a massive cytokine storm, hypercoagulation, an acute respiratory distress syndrome (ARDS) and subsequent multiple organ damage. While all individuals are vulnerable to SARS-CoV-2, the disease outcome and severity differ among people and countries and depend on a dual interaction between the virus and the affected host. Many studies have already pointed out the importance of host genetic polymorphisms (especially in the RAS) as well as other related factors such age, gender, lifestyle and habits and underlying pathologies or comorbidities (diabetes and cardiovascular diseases) that could render individuals at higher risk of infection and pathogenicity. In this review, we explore the correlation between all these risk factors as well as how and why they could account for severe post-COVID-19 complications.  相似文献   

19.
The replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its main protease (Mpro), which is a plausible therapeutic target for coronavirus disease 2019 (COVID-19). Although numerous in silico studies reported the potential inhibitory effects of natural products including cannabis and cannabinoids on SARS-CoV-2 Mpro, their anti-Mpro activities are not well validated by biological experimental data. Herein, a library of minor cannabinoids belonging to several chemotypes including tetrahydrocannabinols, cannabidiols, cannabigerols, cannabichromenes, cannabinodiols, cannabicyclols, cannabinols, and cannabitriols was evaluated for their anti-Mpro activity using a biochemical assay. Additionally, the binding affinities and molecular interactions between the active cannabinoids and the Mpro protein were studied by a biophysical technique (surface plasmon resonance; SPR) and molecular docking, respectively. Cannabinoids tetrahydrocannabutol and cannabigerolic acid were the most active Mpro inhibitors (IC50 = 3.62 and 14.40 μM, respectively) and cannabigerolic acid had a binding affinity KD=2.16×104 M). A preliminary structure and activity relationship study revealed that the anti-Mpro effects of cannabinoids were influenced by the decarboxylation of cannabinoids and the length of cannabinoids’ alkyl side chain. Findings from the biochemical, biophysical, and computational assays support the growing evidence of cannabinoids’ inhibitory effects on SARS-CoV-2 Mpro.  相似文献   

20.
The wild-type SARS-CoV-2 has continuously evolved into several variants with increased transmissibility and virulence. The Delta variant which was initially identified in India created a devastating impact throughout the country during the second wave. While the efficacy of the existing vaccines against the latest SARS-CoV-2 variants remains unclear, extensive research is being carried out to develop potential antiviral drugs through approaches like in silico screening and drug-repurposing. This study aimed to conduct the docking-based virtual screening of 50 potential phytochemical compounds against a Spike glycoprotein of the wild-type and the Delta SARS-CoV-2 variant. Subsequently, molecular docking was performed for the five best compounds, such as Lupeol, Betulin, Hypericin, Corilagin, and Geraniin, along with synthetic controls. From the results obtained, it was evident that Lupeol exhibited a remarkable binding affinity towards the wild-type Spike protein (−8.54 kcal/mol), while Betulin showed significant binding interactions with the mutated Spike protein (−8.83 kcal/mol), respectively. The binding energy values of the selected plant compounds were slightly higher than that of the controls. Key hydrogen bonding and hydrophobic interactions of the resulting complexes were visualized, which explained their greater binding affinity against the target proteins—the Delta S protein of SARS-CoV-2, in particular. The lower RMSD, the RMSF values of the complexes and the ligands, Rg, H-bonds, and the binding free energies of the complexes together revealed the stability of the complexes and significant binding affinities of the ligands towards the target proteins. Our study suggests that Lupeol and Betulin could be considered as potential ligands for SARS-CoV-2 spike antagonists. Further experimental validations might provide new insights for the possible antiviral therapeutic interventions of the identified lead compounds and their analogs against COVID-19 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号