首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
A comparative chemical bonding analysis for the germanides La2MGe6 (M=Li, Mg, Al, Zn, Cu, Ag, Pd) and Y2PdGe6 is presented, together with the crystal structure determination for M=Li, Mg, Cu, Ag. The studied compounds adopt the two closely related structure types oS72-Ce2(Ga0.1Ge0.9)7 and mS36-La2AlGe6, containing zigzag chains and corrugated layers of Ge atoms bridged by M species, with La/Y atoms located in the biggest cavities. Chemical bonding was studied by means of the quantum chemical position-space techniques QTAIM (quantum theory of atoms in molecules), ELI-D (electron localizability indicator), and their basin intersections. The new penultimate shell correction (PSC0) method was introduced to adapt the ELI-D valence electron count to that expected from the periodic table of the elements. It plays a decisive role to balance the Ge−La polar-covalent interactions against the Ge−M ones. In spite of covalently bonded Ge partial structures formally obeying the Zintl electron count for M=Mg2+, Zn2+, all the compounds reveal noticeable deviations from the conceptual 8−N picture due to significant polar-covalent interactions of Ge with La and M ≠ Li, Mg atoms. For M=Li, Mg a formulation as a germanolanthanate M[La2Ge6] is appropriate. Moreover, the relative Laplacian of ELI-D was discovered to reveal a chemically useful fine structure of the ELI-D distribution being related to polyatomic bonding features. With the aid of this new tool, a consistent picture of La/Y−M interactions for the title compounds was extracted.  相似文献   

2.
The compound Sr3LiAs2H was synthesized by reaction of elemental strontium, lithium, and arsenic, as well as LiH as hydrogen source. The crystal structure was determined by single‐crystal X‐ray diffraction: space group Pnma; Pearson symbol oP28; a = 12.0340(7), b = 4.4698(2), c = 12.5907(5) Å; V = 677.2(1) Å3; RF = 0.047 for 1021 reflections and with 36 parameters refined. The positions of the hydrogen atoms were first revealed by the electron localizability indicator and subsequently confirmed by crystal structure refinement. In the crystal structure of Sr3LiAs2H the metal atoms are arranged in a Gd3NiSi2‐type motif, whereas the hydrogen atoms are arranged in a distorted tetrahedral environment formed by strontium. The calculated band structure revealed that Sr3LiAs2H is a semiconductor, which is in agreement with its diamagnetic behavior. Thus, Sr3LiAs2H is considered as a (charge‐balanced) Zintl phase.  相似文献   

3.
    
Gene silencing is an important biological strategy for studying gene functions, exploring disease mechanisms and developing therapeutics. 8–17 DNAzyme is of great potential for gene silencing, due to its higher RNA-cleaving activity. However, it is not generally used in practice, due to its divalent cation dependence and poor understanding of its cellular mechanisms. To address these issues, we have explored its activity in vitro and in cells and found that it can cleave RNA substrates under the simulated physiological conditions, and its gene-silencing activity is additionally enhanced by its RNase H compatibility, offering both cleavage and antisense activities in cells. Further, chemical modifications can facilitate its stability, substrate binding affinity and gene-silencing activity. Our research results suggest that this DNAzyme can demonstrate high levels of activities for both actions in cells, making it a useful tool for exploring biomedical applications.  相似文献   

4.
    
Novel Coloring of the α‐Mn Structure Type with Main Group Elements in K5Pb24 – Crystal Structure, Superconductivity, and Structure Property Relationship K5Pb24 was synthesized from the elements in a welded niobium ampoule at 800 °C. The crystal structure was determined from X‐ray single crystal data. Space group I 4 3m, a = 12.358(1) Å, Z = 2, Pearson symbol cI58. The structure of K5Pb24 shows an ordered atomic distribution on the four crystallographic sites of the α‐Mn structure type. The aristotype is decomposed into cluster units consisting of 48 Pb atoms. The structural subunits are built from four 16‐vertex Frank Kasper polyhedra, which consist of 15 Pb and one K atom (K1). The 16‐vertex polyhedra are centered with another K atom (K2). Four such polyhedra share a common corner (K1) and several edges. 18 shared edges form a truncated tetrahedra of twelve Pb atoms. These atoms form together with four K1 atoms (located in the center of the Frank Kasper polyhedra) a Friauf polyhedra. The result is a ‘supratetrahedra‘ of 48 Pb atoms enclosing five K atoms. The body centered arrangement of this units results in a three‐dimensional framework of Pb atoms. The title compound is the lead‐richest phase of the K/Pb system. Superconducting properties are observed from temperature dependent susceptibility measurements. Field dependent measurements reveal a hard type II superconductor. LMTO and EH band structure calculations verify the metallic behavior. An analysis of the density of states with the help of the electron localization function (ELF) shows the presence of lone pairs in this intermetallic phase. The role of lone pairs is discussed with respect to the superconducting property.  相似文献   

5.
    
The spodium–π bonding between MX2 (M = Zn, Cd, and Hg; X = Cl, Br, and I) acting as a Lewis acid, and C2H2/C2H4 acting as a Lewis base was studied by ab initio calculations. Two types of structures of cross (T) and parallel (P) forms are obtained. For the T form, the X–M–X axis adopts a cross configuration with the molecular axis of C≡C or C=C, but both of them are parallel in the P form. NCI, AIM, and electron density shifts analyses further, indicating that the spodium–π bonding exists in the binary complexes. Spodium–π bonding exhibits a partially covalent nature characterized with a negative energy density and large interaction energy. With the increase of electronegativity of the substituents on the Lewis acid or its decrease in the Lewis base, the interaction energies increase and vice versa. The spodium–π interaction is dominated by electrostatic interaction in most complexes, whereas dispersion and electrostatic energies are responsible for the stability of the MX2⋯C2F2 complexes. The spodium–π bonding further complements the concept of the spodium bond and provides a wider range of research on the adjustment of the strength of spodium bond.  相似文献   

6.
    
Two biologically active adamantane-linked hydrazine-1-carbothioamide derivatives, namely 2-(adamantane-1-carbonyl)-N-(tert-butyl)hydrazine-1-carbothioamide) 1 and 2-(adamantane-1-carbonyl)-N-cyclohexylhydrazine-1-carbothioamide 2, have been synthesized. X-ray analysis was conducted to study the effect of the t-butyl and cyclohexyl moieties on the intermolecular interactions and conformation of the molecules in the solid state. X-ray analysis reveals that compound 1 exhibits folded conformation, whereas compound 2 adopts extended conformation. The Hirshfeld surface analysis indicates that the contributions of the major intercontacts involved in the stabilization of the crystal structures do not change much as a result of the t-butyl and cyclohexyl moieties. However, the presence and absence of these contacts is revealed by the 2D-fingerprint plots. The CLP–Pixel method was used to identify the energetically significant molecular dimers. These dimers are stabilized by different types of intermolecular interactions such as N–H···S, N–H···O, C–H···S, C–H···O, H–H bonding and C–H···π interactions. The strength of these interactions was quantified by using the QTAIM approach. The results suggest that N–H···O interaction is found to be stronger among other interactions. The in vitro assay suggests that both compounds 1 and 2 exhibit urease inhibition potential, and these compounds also display moderate antiproliferative activities. Molecular docking analysis shows the key interaction between urease enzyme and title compounds.  相似文献   

7.
    
Novel zinc–palladium–porphyrin bimetal metal–organic framework (MOF) nanosheets were directly synthesized by coordination chelation between Zn(II) and Pd(II) tetra(4-carboxyphenyl)porphin (TCPP(Pd)) using a solvothermal method. Furthermore, a serial of carbon nanosheets supported Pd–Zn intermetallics (Pd–Zn-ins/CNS) with different Pd: Zn atomic ratios were obtained by one-step carbonization under different temperature using the prepared Zn-TCPP(Pd) MOF nanosheets as precursor. In the carbonization process, Pd–Zn-ins went through the transformation from PdZn (650 °C) to Pd3.9Zn6.1 (~950 °C) then to Pd3.9Zn6.1/Pd (1000 °C) with the temperature increasing. The synthesized Pd–Zn-ins/CNS were further employed as catalysts for selective hydrogenation of acetylene. Pd3.9Zn6.1 showed the best catalytic performance compared with other Pd–Zn intermetallic forms.  相似文献   

8.
    
The nature of halogen-bond interactions was scrutinized from the perspective of astatine, potentially the strongest halogen-bond donor atom. In addition to its remarkable electronic properties (e.g., its higher aromaticity compared to benzene), C6At6 can be involved as a halogen-bond donor and acceptor. Two-component relativistic calculations and quantum chemical topology analyses were performed on C6At6 and its complexes as well as on their iodinated analogues for comparative purposes. The relativistic spin–orbit interaction was used as a tool to disclose the bonding patterns and the mechanisms that contribute to halogen-bond interactions. Despite the stronger polarizability of astatine, halogen bonds formed by C6At6 can be comparable or weaker than those of C6I6. This unexpected finding comes from the charge-shift bonding character of the C–At bonds. Because charge-shift bonding is connected to the Pauli repulsion between the bonding σ electrons and the σ lone-pair of astatine, it weakens the astatine electrophilicity at its σ-hole (reducing the charge transfer contribution to halogen bonding). These two antinomic characters, charge-shift bonding and halogen bonding, can result in weaker At-mediated interactions than their iodinated counterparts.  相似文献   

9.
    
Performing synthetic transformation using visible light as energy source, in the presence of a photocatalyst as a promoter, is currently of high interest, and oxidation reactions carried out under these conditions using oxygen as the final oxidant are particularly convenient from an environmental point of view. This review summarizes the recent developments achieved in the oxidative dehydrogenation of C–N and C–O bonds, leading to C=N and C=O bonds, respectively, using air or pure oxygen as oxidant and metal-free homogeneous or recyclable heterogeneous photocatalysts under visible light irradiation.  相似文献   

10.
11.
12.
    
Zeolite imidazolate framework-8 (ZIF-8) is a promising platform for drug delivery, and information regarding the stability of ZIF-8 nanoparticles in cell culture media is essential for proper interpretation of in vitro experimental results. In this work, we report a quantitative investigation of the ZIF-8 nanoparticle’s stability in most common cell culture media. To this purpose, ZIF-8 nanoparticles containing sterically shielded nitroxide probes with high resistance to reduction were synthesized and studied using electron paramagnetic resonance (EPR). The degradation of ZIF-8 in cell media was monitored by tracking the cargo leakage. It was shown that nanoparticles degrade at least partially in all studied media, although the degree of cargo leakage varies widely. We found a strong correlation between the amount of escaped cargo and total concentration of amino acids in the environment. We also established the role of individual amino acids in ZIF-8 degradation. Finally, 2-methylimidazole preliminary dissolved in cell culture media partially inhibits the degradation of ZIF-8 nanoparticles. The guidelines for choosing the proper cell culture medium for the in vitro study of ZIF-8 nanoparticles have been formulated.  相似文献   

13.
Diels–Alder (DA) cycloadditions in reversible polymer networks are important for designing sustainable materials with self-healing properties. In this study, the DA kinetics of hydroxyl-substituted bis- and tetrafunctional furans with bis- and tris-functional maleimides, both containing ether-functionalized spacers, is investigated by modelling two equilibria representing the endo and exo cycloadduct formation. Concretely, the potential catalysis of the DA reaction through hydrogen bonding between hydroxyl of the furans and carbonyl of the maleimides or ether of the spacers is experimentally and theoretically scrutinized. Initial reaction rates and forward DA rate constants are determined by microcalorimetry at 20 °C for a model series of reversible networks, extended with (i) a hydroxyl-free network and hydroxyl-free linear or branched systems, and (ii) polypropylene glycol additives, increasing the hydroxyl concentration. A computational density-functional theory study is carried out on the endo and exo cycloadditions of furan and maleimide derivatives, representative for the experimental ones, in the absence and presence of ethylene glycol as additive. Additionally, an ester-substituted furan was investigated as a hydroxyl-free system for comparison. Experiment and theory indicate that the catalytic effect of H-bonding is absent or very limited. While increased concentration of H-bonding could in theory catalyze the DA reaction, the experimental results rule out this supposition.  相似文献   

14.
    
Reactive oxygen species (ROS) are continuously produced in living cells due to metabolic and biochemical reactions and due to exposure to physical, chemical and biological agents. Excessive ROS cause oxidative stress and lead to oxidative DNA damage. Within ROS-mediated DNA lesions, 8-oxoguanine (8-oxoG) and its nucleotide 8-oxo-2′-deoxyguanosine (8-oxodG)—the guanine and deoxyguanosine oxidation products, respectively, are regarded as the most significant biomarkers for oxidative DNA damage. The quantification of 8-oxoG and 8-oxodG in urine, blood, tissue and saliva is essential, being employed to determine the overall effects of oxidative stress and to assess the risk, diagnose, and evaluate the treatment of autoimmune, inflammatory, neurodegenerative and cardiovascular diseases, diabetes, cancer and other age-related diseases. High-performance liquid chromatography with electrochemical detection (HPLC–ECD) is largely employed for 8-oxoG and 8-oxodG determination in biological samples due to its high selectivity and sensitivity, down to the femtomolar range. This review seeks to provide an exhaustive analysis of the most recent reports on the HPLC–ECD determination of 8-oxoG and 8-oxodG in cellular DNA and body fluids, which is relevant for health research.  相似文献   

15.
    
The crystal structures of 1-(2,3,5,6-tetrafluoro-4-pyridyl)-3-benzylimidazolium chloride (1) and iodide (3) have been determined by single crystal X-ray diffraction. The crystal structure of 1 is similar to that of the bromide salt (2), possessing anion···C5F5N···C6H5 motifs, whilst that of 3 contains columns of alternating iodide anions and parallel tetrafluoropyridyl rings. All three crystal structures possess C(1)–H∙∙∙X and C(2)–H∙∙∙X hydrogen bonding. DFT calculations reveal that the strengths of the hydrogen bonding interactions lie in the order C(1)–H···X > C(3)–H···X > C(2)–H···X for the same halide (X) and Cl > Br > I for each position. It is suggested that salt 3 adopts a different structure to salts 1 and 2 because of the larger size of iodide.  相似文献   

16.
    
Flavonoids are biologically active natural products of great interest for their potential applications in functional foods and pharmaceuticals. A hesperetin-7-O-glucoside inclusion complex with β-cyclodextrin (HEPT7G/βCD; SunActive® HCD) was formulated via the controlled enzymatic hydrolysis of hesperidin with naringinase enzyme. The conversion rate was nearly 98%, estimated using high-performance liquid chromatography analysis. The objective of this study was to investigate the stability, solubility, and spectroscopic features of the HEPT7G/βCD inclusion complex using Fourier-transform infrared (FTIR), Raman, ultraviolet–visible absorption (UV–vis), 1H- and 13C- nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), liquid chromatography/mass spectroscopy (LC–MS), scanning electron microscopy (SEM), and powdered X-ray diffraction (PXRD) spectroscopic techniques including zeta potential, Job’s plot, and phase solubility measurements. The effects of complexation on the profiles of supramolecular interactions in analytic features, especially the chemical shifts of β-CD protons in the presence of the HEPT7G moiety, were evaluated. The stoichiometric ratio, stability, and solubility constants (binding affinity) describe the extent of complexation of a soluble complex in 1:1 stoichiometry that exhibits a greater affinity and fits better into the β-CD inner cavity. The NMR spectroscopy results identified two different configurations of the HEPT7G moiety and revealed that the HEPT7G/βCD inclusion complex has both –2S and –2R stereoisomers of hesperetin-7-O-glucoside possibly in the –2S/–2R epimeric ratio of 1/1.43 (i.e., –2S: 41.1% and –2R: 58.9%). The study indicated that encapsulation of the HEPT7G moiety in β-CD is complete inclusion, wherein both ends of HEPT7G are included in the β-CD inner hydrophobic cavity. The results showed that the water solubility and thermal stability of HEPT7G were apparently increased in the inclusion complex with β-CD. This could potentially lead to increased bioavailability of HEPT7G and enhanced health benefits of this flavonoid.  相似文献   

17.
    
In 1996, we reported that silyl groups of 9,10-disilylanthracenes significantly affect the UV/Vis and fluorescence spectra. Although the results indicate that the silyl groups have strong electronic effects on anthracene, the details of the mechanisms responsible for this have not yet been clarified. This article describes the analysis of the UV/Vis and fluorescence spectra of 9,10-bis(diisopropylsilyl)anthracene by theoretical calculations. This study reveals that π conjugation of anthracene is extended by cooperation of σ–π and σ*–π* conjugation between the silyl groups and anthracene. This effect increases the transition moment of the π–π* transition of anthracene. As a result, the molecular extinction coefficient of the 1La band and the fluorescence quantum yield are increased.  相似文献   

18.
    
Similarities and differences of halogen and hydrogen bonding were explored via UV–Vis and 1H NMR measurements, X-ray crystallography and computational analysis of the associations of CHX3 (X=I, Br, Cl) with aromatic (tetramethyl-p-phenylenediamine) and aliphatic (4-diazabicyclo[2,2,2]octane) amines. When the polarization of haloforms was taken into account, the strengths of these complexes followed the same correlation with the electrostatic potentials on the surfaces of the interacting atoms. However, their spectral properties were quite distinct. While the halogen-bonded complexes showed new intense absorption bands in the UV–Vis spectra, the absorptions of their hydrogen-bonded analogues were close to the superposition of the absorption of reactants. Additionally, halogen bonding led to a shift in the NMR signal of haloform protons to lower ppm values compared with the individual haloforms, whereas hydrogen bonding of CHX3 with aliphatic amines resulted in a shift in the opposite direction. The effects of hydrogen bonding with aromatic amines on the NMR spectra of haloforms were ambivalent. Titration of all CHX3 with these nucleophiles produced consistent shifts in their protons’ signals to lower ppm values, whereas calculations of these pairs produced multiple hydrogen-bonded minima with similar structures and energies, but opposite directions of the NMR signals’ shifts. Experimental and computational data were used for the evaluation of formation constants of some halogen- and hydrogen-bonded complexes between haloforms and amines co-existing in solutions.  相似文献   

19.
    
The complexation of metal cations into a host–guest situation is particularly well exemplified by [2.2.2]paracyclophane and AgI, which leads to a strong cation–π interaction with a specific face of the host molecule. Through this study we sought a deeper understanding of the effects the metal center has on the NMR spectroscopic properties of the prototypical organic host, generating theoretical reasons for the observed experimental results with an aim to determine the role of the cation–π interaction in a host–guest scenario. From an analysis of certain components of the induced magnetic field and the 13C NMR shielding tensor under its own principal axis system (PAS), the local and overall magnetic behavior can be clearly described. Interestingly, the magnetic response of such a complex exhibits a large axis-dependent behavior, which leads to an overall shielding effect for the coordinating carbon atoms and a deshielding effect for the respective uncoordinated counterparts, evidence that complements previous experimental results. This proposed approach can be useful to gain further insight into the local and overall variation of NMR shifts for host–guest pairs involving both inorganic and organic hosts.  相似文献   

20.
    
Herein, we describe the development of one-pot transformation of α-ethoxy derivatives of phosphorus analogs of protein and non-protein α-amino acids into biologically important N-protected 1-aminobisphosphonates. The proposed strategy, based on the three-component reaction of 1-(N-acylamino)-1-ethoxyphosphonates with triphenylphosphonium tetrafluoroborate and triethyl phosphite, facilitates good to excellent yields under mild reaction conditions. The course of the reaction was monitored by 31P NMR spectroscopy, allowing the identification of probable intermediate species, thus making it possible to propose a reaction mechanism. In most cases, there is no need to use a catalyst to provide transformation efficiency, which increases its attractiveness both in economic and ecological terms. Furthermore, we demonstrate that the one-pot procedure can be successfully applied for the synthesis of structurally diverse N-protected bisphosphonic analogs of α-amino acids. As shown, the indirect formation of the corresponding phosphonium salt as a reactive intermediate during the conversion of 1-(N-acylamino)-1-ethoxyphosphonate into a 1-aminobisphosphonate derivative is a crucial component of the developed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号