首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new hybrid gated mesoporous materials ( SN3‐1 , SNH2‐2 , and SN3‐3 ) loaded with the dye [Ru(bipy)3]2+ (bipy=bipyridine) and capped with different tetrathiafulvalene (TTF) derivatives (having different sizes and shapes and incorporating different numbers of sulfur atoms) have been prepared. The materials SN3‐1 and SN3‐3 are functionalized on their external surfaces with the TTF derivatives 1 and 3 , respectively, which were attached by employing the “click” chemistry reaction, whereas SNH2‐2 incorporates the TTF derivative 2 , which was anchored to the solid through an amidation reaction. The final gated materials have been characterized by standard techniques. Suspensions of these solids in acetonitrile showed “zero release”, most likely because of the formation of dense TTF networks around the pore outlets. The release of the entrapped [Ru(bipy)3]2+ dye from SN3‐1 , SNH2‐2 , and SN3‐3 was studied in the presence of selected explosives (Tetryl, TNT, TNB, DNT, RDX, PETN, PA, and TATP). SNH2‐2 showed a fairly selective response to Tetryl, whereas for SN3‐1 and SN3‐3 dye release was found to occur with Tetryl, TNT, and TNB. The uncapping process in the three materials can be ascribed to the formation of charge‐transfer complexes between the electron‐donating TTF units and the electron‐accepting nitroaromatic explosives. Finally, solids SNH2‐2 and SN3‐1 have been tested for Tetryl detection in soil with good results, pointing toward a possible use of these or similar hybrid capped materials as probes for the selective chromo‐fluorogenic detection of nitroaromatic explosives.  相似文献   

2.
《化学:亚洲杂志》2017,12(20):2670-2674
The development of easy and affordable methods for the detection of cyanide is of great significance due to the high toxicity of this anion and the potential risks associated with its pollution. Herein, optical detection of cyanide in water has been achieved by using a hybrid organic–inorganic nanomaterial. Mesoporous silica nanoparticles were loaded with [Ru(bipy)3]2+, functionalized with macrocyclic nickel(II) complex subunits, and capped with a sterically hindering anion (hexametaphosphate). Cyanide selectively induces demetallation of nickel(II) complexes and the removal of capping anions from the silica surface, allowing the release of the dye and the consequent increase in fluorescence intensity. The response of the capped nanoparticles in aqueous solution is highly selective and sensitive towards cyanide with a limit of detection of 2 μm .  相似文献   

3.
Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept—that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols.  相似文献   

4.
A nanodevice based on mesoporous silica nanoparticles with rhodamine B in the pore framework, functionalized with carboxylates on the outer surface and capped with the cationic polymyxin B peptide, was used to selectively detect endotoxin in aqueous solutions with a limit of detection in the picomolar range.  相似文献   

5.
6.
Excessive apoptotic cell death is at the origin of several pathologies, such as degenerative disorders, stroke or ischemia‐reperfusion damage. In this context, strategies to improve inhibition of apoptosis and other types of cell death are of interest and may represent a pharmacological opportunity for the treatment of cell‐death‐related disorders. In this scenario new peptide‐containing delivery systems (solids S1 ‐ P1 and S1 ‐ P2 ) are described based on mesoporous silica nanoparticles (MSNs) loaded with a dye and capped with the KKGDEVDKKARDEVDK ( P1 ) peptide that contains two repeats of the DEVD target sequence that are selectively hydrolyzed by caspase 3 ( C3 ). This enzyme plays a central role in the execution‐phase of apoptosis. HeLa cells electroporated with S1 – P1 are able to deliver the cargo in the presence of staurosporin (STS), which induces apoptosis with the consequent activation of the cytoplasmic C3 enzyme. Moreover, the nanoparticles S1 ‐ P2 , containing both a cell‐penetrating TAT peptide and P1 also entered in HeLa cells and delivered the cargo preferentially in cells treated with the apoptosis inducer cisplatin.  相似文献   

7.
王鑫  谭丽丽  杨英威 《化学学报》2016,74(4):303-311
靶向给药控释体系既可以增强药物在病灶部位的疗效, 又可以降低药物对正常部位的毒副作用. 基于介孔二氧化硅为"容器"-金纳米粒子为"开关"(MSN-AuNPs)的杂化纳米阀门体系同时具备两种纳米粒子的优良特性, 在化学、生物材料以及临床医药等多学科受到广泛关注. 本文根据刺激手段和应用功能分类, 介绍了单一功能和多重功能的MSN-AuNPs杂化纳米阀门体系的重要研究进展, 以及目前面临的挑战和今后的发展方向.  相似文献   

8.
Three orientations to choose from : 2D hexagonal organically functionalized mesoporous silica nanoparticles with tunable mesochannel orientation (straight, helical, and radial mesochannels) were synthesized through a simple addition of various amounts of ureidopropyltrimethoxylsilane (UDPTMS) in the condensation of tetraorthosilicate (TEOS) in aqueous solution.

  相似文献   


9.
10.
CuII‐macrocycle functionalized hexametaphosphate‐capped silica mesoporous nanoparticles have been prepared and used for the selective and sensitive detection of hydrogen sulfide in aqueous environments. The possibility of using different metal complexes combined with different capping anions and choice of different dyes or other sensing molecules as indicators makes this new protocol highly appealing for the preparation of new sensing systems for sulfide detection in different environments.  相似文献   

11.
12.
13.
14.
Small mesoporous silica nanoparticles (MSNs; ca. 37 nm in diameter) have a high loading capacity for a hydrophobic photosensitizer, SiPcCl2 (82.6 % in weight), and excellent endocytosis properties. As a result, the amount of SiPcCl2 being delivered to cancer cells is increased by approximately two orders of magnitude compared to pure SiPcCl2 at the same dosage, and the photodynamic therapy (PDT) efficiency is enhanced by over fourfold. Our method can be widely used to increase the dosage of hydrophobic anti‐cancer drugs in cancer cells and therefore increase the cytotoxicity of the drugs.  相似文献   

15.
李丽  季伟捷  区泽棠 《化学进展》2009,21(9):1742-1749
金(Au)的催化作用已成为催化领域的前沿研究课题。本文综述了近年来采用不同方法制备介孔二氧化硅(MCM-41, MCM-48, SBA-15)负载的纳米Au催化剂以及在CO低温氧化、环己烯加氢和环己烷氧化等反应中的催化作用。讨论了影响纳米Au催化剂活性的相关因素, 包括载体的种类、表面性质、Au纳米颗粒的尺寸、分散度以及稳定性等。最后对各种制备纳米Au的方法进行了总结。  相似文献   

16.
Herein, we present a straightforward synthesis of pH‐responsive chitosan‐capped mesoporous silica nanoparticles (MSNs). These MCM‐41‐type MSNs could be used as nanocapsules to accommodate guest molecules. Subsequently, (3‐glycidyloxypropyl)trimethoxysilane was grafted onto the surface of the MSNs, which served as a bridge to link between MSNs and chitosan, which is ubiquitous in nature and commercially available. Owing to the pH‐responsive and biocompatible features of chitosan, the loading and release of an anti‐cancer drug, doxorubicin hydrochloride, were carried out in vitro, in which the composite chitosan‐capped MSNs (CS‐MSNs) showed excellent environmental response. As the pH value of the media decreased, the degree of drug release correspondingly increased. Moreover, thanks to the perfect biocompatibility of chitosan, the CS‐MSNs exhibited lower cytotoxicity than that of the naked MSNs in an MTT assay. In addition, the in vitro kill potency against MCF‐7 breast‐cancer cells was enhanced over time, as well as with increasing concentration of the drug‐loaded CS‐MSNs. These results indicate that CS‐MSNs are promising candidates for pH‐responsive drug delivery in cancer therapy.  相似文献   

17.
18.
复合介孔二氧化硅膜是近十年来发展起来的一种具有独特孔中孔结构的新型膜材料。该材料以多孔膜(无机多孔膜或者有机多孔膜)为硬模板,以表面活性剂为结构导向剂,通过溶胶-凝胶等方法将介孔二氧化硅材料组装在多孔膜的孔道中制备而成。由于其具有不同于传统介孔二氧化硅膜材料的一些独特结构和性能,并在分离、吸附和催化等领域具有广泛的应用前景,引起了人们广泛的关注。本文主要就复合介孔二氧化硅膜的制备方法,特别是近几年内其在纳滤、纳米材料的模板合成、酶的固定、传感器、反应器以及药物释放等方面最新的应用研究进展进行论述,同时对这类新型的复合介孔二氧化硅膜材料在合成和应用方面存在的问题进行了分析和总结,并对其发展前景作了展望。  相似文献   

19.
Herein, we introduce a new polypeptide‐functionalized mesoporous silica template fabricated from a biodegradable poly(ethylene oxide‐b‐?‐caprolactone) (PEO‐b‐PCL) diblock copolymer and a poly(tyrosine) (PTyr) biopolymer. The crystallization behavior of the PEO‐b‐PCL diblock copolymer changes after blending, but the secondary structure of PTry remains stable. After selective solvent extraction in THF, the PEO‐b‐PCL is removed, but PTyr remains within the silica matrix due to its different solubility. Fourier‐transform IR spectroscopic analysis (FTIR), thermal gravitometry analysis (TGA), small‐angle X‐ray scattering (SAXS), and X‐ray diffraction (XRD) studies confirm the retention of PTyr to form a polypeptide‐functionalized mesoporous material. The adsorption of methylene blue hydrate (MB) from aqueous solution into the polypeptide‐functionalized mesoporous silica is investigated, thus revealing that the nanocomposite exhibits a high adsorption capacity relative to pure silica due to hydrogen‐bonding interactions between the hydroxy phenolic group of PTyr and the N‐containing aromatic ring from MB.  相似文献   

20.
New capped silica mesoporous nanoparticles for intracellular controlled cargo release within cathepsin B expressing cells are described. Nanometric mesoporous MCM‐41 supports loaded with safranin O ( S1‐P ) or doxorubicin ( S2‐P ) containing a molecular gate based on a cathepsin B target peptidic sequence were synthesized. Solids were designed to show “zero delivery” and to display cargo release in the presence of cathepsin B enzyme, which selectively hydrolyzed in vitro the capping peptide sequence. Controlled delivery in HeLa, MEFs WT, and MEFs lacking cathepsin B cell lines were also tested. Release of safranin O and doxorubicin in these cells took place when cathepsin B was active or present. Cells treated with S2‐P showed a fall in cell viability due to nanoparticles internalization, cathepsin B hydrolysis of the capping peptide, and cytotoxic agent delivery, proving the possible use of these nanodevices as new therapeutic tools for cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号