首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is an important signaling molecule involved in a wide range of physiological and pathological processes. Fluorescent imaging is a useful tool for monitoring NO concentration, which could be essential in various biological and biochemical studies. Here, we report the design of a novel small-molecule fluorescent probe based on 9(10H)acridone moiety for nitric oxide sensing. 7,8-Diamino-4-carboxy-10-methyl-9(10H)acridone reacts with NO in aqueous media in the presence of O2, yielding a corresponding triazole derivative with fivefold increased fluorescence intensity. The probe was shown to be capable of nitric oxide sensing in living Jurkat cells.  相似文献   

2.
The use of nitric oxide (NO) is emerging as a promising, novel approach for the treatment of antibiotic resistant bacteria and biofilm infections. Depending on the concentration, NO can induce biofilm dispersal, increase bacteria susceptibility to antibiotic treatment, and induce cell damage or cell death via the formation of reactive oxygen or reactive nitrogen species. The use of NO is, however, limited by its reactivity, which can affect NO delivery to its target site and result in off-target effects. To overcome these issues, and enable spatial or temporal control over NO release, various strategies for the design of NO-releasing materials, including the incorporation of photo-activable, charge-switchable, or bacteria-targeting groups, have been developed. Other strategies have focused on increased NO storage and delivery by encapsulation or conjugation of NO donors within a single polymeric framework. This review compiles recent developments in NO drugs and NO-releasing materials designed for applications in antimicrobial or anti-biofilm treatment and discusses limitations and variability in biological responses in response to the use of NO for bacterial eradiation.  相似文献   

3.
The review considers problems related to the formation, in the living organism, of nitric oxide, a versatile and vitally important regulator of cell metabolism. The pathways of formation of endogenous nitric oxide from L-arginine are discussed and the main approaches to increasing the NO concentration by introducing various types of exogenous nitric oxide donors into the organism and chemical and biological characteristics of these donors are considered. Primary attention is devoted to the known drugs that were shown to release NO under hydrolytic, oxidative, or reductive conditions. The solution of problems related to the elucidation of the mechanisms of drug action requires that the formation of nitric oxide be taken into account.  相似文献   

4.
The multifaceted role nitric oxide (NO) plays in human physiology and pathophysiology has stimulated a massive interest on NO‐releasing compounds for therapeutic purposes. A main issue associated with use of NO donors is the precise spatiotemporal control of the NO release, as its effects are strictly site‐ and dose‐dependent. NO photochemical precursors permit surmounting this difficulty since triggering with light offers an exquisite control of location and timing of NO delivery. On the other hand, the combination of NO photodonors with fluorescent components remains an urgent need for image‐guided phototherapeutic treatments based on the use of NO. Fluorescence techniques permit not only an easy tracking of the photoprecursor in a biological environment but also the real‐time quantification of the NO photoreleased therein in a non‐invasive fashion. In this Focus Review we seek to provide an overview of recent advances in photoactivable platforms developed in our and other laboratories which combine the photoregulated release of NO with fluorescent functionalities. We shall focus attention on NO photoreleasing systems exhibiting 1) persistent fluorescence and 2) photoactivable fluorescence signals, highlighting their logical design and potential developments for phototheranostics.  相似文献   

5.
The synthesis and properties of the new fluorescent nitric oxide cheletropic trap (FNOCT) 14 , designed for the trapping and quantification of nitric oxide (NO) production in chemical and biological systems, is described (Scheme 3). The dicarboxylic acid 14 and the corresponding bis[(acetyloxy)methyl] ester derivative 15 of the FNOCT contain a 2‐methoxy‐substituted phenanthrene group as fluorophoric unit. The fluorescence of the reduced NO adduct of this FNOCT (λexc 320 nm, λem 380 nm) is pH‐independent. Trapping experiments were carried out in aqueous buffer solution at pH 7.4 with nitric oxide being added as a bolus as well as being released from the NO donor compound MAHMA NONOate (= (1Z)‐1‐{methyl[6‐(methylammonio)hexyl]amino}diazen‐1‐ium‐1,2‐diolate), indicating a trapping efficiency of ca. 50%. In a biological application, nitric oxide was scavenged from a culture of lipopolysaccharide‐stimulated rat alveolar macrophages. Under the applied conditions, a production of 11.1 ± 1.5 nmol of NO per hour and per 105 cells was estimated.  相似文献   

6.
A new two-photon fluorescent probe, ADNO, for nitric oxide (NO) based on intramolecular photoinduced electron transfer (PET) mechanism d/splays a rapid response to NO with a remarkable fluorescent enhancement in PBS buffer. The excellent chemoselectivity of ADNO for NO over other ROS/RNS (reactive oxygen species or nitrogen species) and common metal ions was observed. Moreover, ADNO has been successfully applied in fluorescence imaging of NO of living cells using both one-photon microscopy (OPM) and two-~hoton microscopy (TPM),  相似文献   

7.
A naphthalimide‐based fluorescent probe, LyNP‐NO , was designed and synthesized for the selective detection of exogenously and endogenously generated nitric oxide (NO) in C6 glial cells. In addition, LyNP‐NO was also explored for monitoring endogenous NO levels in rat hippocampus at various tissue depths by stimulating the brain with N‐methyl‐d ‐aspartate (NMDA).  相似文献   

8.
Nitric oxide (NO) plays a multifaceted role in human physiology and pathophysiology, and its controlled delivery has great prospects in therapeutic applications. The light-activated uncaging of NO from NO caging compounds allows this free radical to be released with accurate control of site and dosage, which strictly determine its biological effects. Molecular constructs able to activate fluorescence concomitantly to NO release offer the important advantage of easy and real-time tracking of the amount of NO uncaged in a non-invasive fashion even in the cell environment. This contribution provides an overview of the advances in photoactivatable NO releasers bearing fluorescent reporting functionalities achieved in our and other laboratories, highlighting the rationale design and their potential therapeutic applications.  相似文献   

9.
《Electroanalysis》2018,30(8):1610-1615
Nitric oxide (NO) levels in exhaled breath are a non‐invasive marker that can be used to diagnose various respiratory diseases and monitor a patient's response to given therapies. A portable and inexpensive device that can enable selective NO concentration measurements in exhaled breath samples is needed. Herein, the performance of an amperometric Pt‐Nafion‐based gas phase sensor for detection of NO in exhaled human nasal breath is examined. Enhanced selectivity over carbon monoxide and ammonia is achieved via an in‐line zinc oxide‐based filter. Exhaled nasal NO levels measured in 21 human samples with the sensor are shown to correlate well with those obtained using a chemiluminescence reference method (R2=0.9836).  相似文献   

10.
《Electroanalysis》2004,16(8):640-643
Nitric oxide (NO) is an important molecule in many different physiological phenomena. Investigation of nitric oxide production in vivo requires a specialized sensor capable of real‐time concentration measurement, with a high spatial resolution of NO gas production. In this study, a flexible microsensor is developed specifically for measurement of production of nitric oxide. The new sensor consists of a Pt/Ir working electrode coupled with an integrated Ag/AgCl reference electrode. The sensor is coated with a series of NO‐selective membrane polymers to prevent potential amperometric response due to interfering species. Presented experimental data demonstrates the ability for NO detection between 100 and 400 nM concentrations with a linear response (R2=0.9997). The detection limit of the sensor is 2.14 nM (S/N=3). Various selectivity experiments are indicative of a resistance to interfering species such as dopamine, norepinephrine, L ‐arginine.  相似文献   

11.
The requirement for nitric oxide (NO) of lysosomes has motivated the development of a sophisticated fluorescent probe to monitor the distribution of this important biomolecule at the subcellular level in living cells. A near‐infrared (NIR) fluorescent Si‐rhodamine (SiRB)‐NO probe was designed based on the NO‐induced ring‐opening process of Si‐rhodamine. The probe exhibits fast chromogenic and fluorogenic responses, and high sensitivity and selectivity toward trace amounts of NO. Significantly, the spirolactam in Si‐rhodamine exhibits very good tolerance to H+, which in turn brings extremely low background fluorescence not only in the physiological environment but also under acidic conditions. The stability of the highly fluorescent product in acidic solution provides persistent fluorescence emission for long‐term imaging experiments. To achieve targeted imaging with improved spatial resolution and sensitivity, an efficient lysosome‐targeting moiety was conjugated to a SiRB‐NO probe, affording a tailored lysosome‐targeting NIR fluorescent Lyso‐SiRB‐NO probe. Inheriting the key advantages of its parent SiRB‐NO probe, Lyso‐SiRB‐NO is a functional probe that is suited for monitoring lysosomal NO with excellent lysosome compatibility. Imaging experiments demonstrated the monitoring of both exogenous and endogenous NO in real time by using the Lyso‐SiRB‐NO probe.  相似文献   

12.
Nitric oxide is an important biological messenger that particularly induces the relaxation of smooth muscle cells surrounding vessels, and, hence, controls the flow of blood. This mechanism is essential for brain function, and its fine control, termed functional hyperemia, is supposed to be realized by certain neurons that may release bursts of NO*. The aim of the present study is to examine the advantages of platinized carbon-fiber microelectrodes (5-7 microm tip diameter) for the direct and in situ electrochemical detection of NO* released by neurons into ex vivo cerebellum slices. After establishing the different analytical properties of the platinized carbon-fiber microelectrodes in vitro on NO* solutions at 50 nM to 1 mM concentration, they were characterized using DEA-NONOate solutions that chemically decompose into NO*, and therefore mimic the measurement of transient variations of NO* concentration in biological samples. This validated the present approach, so that direct, in situ ex vivo measurements of nitric oxide released by neurons in a rat cerebellar slice are presented and discussed.  相似文献   

13.
Nitric Oxide (NO) is a potent signaling molecule involved in the regulation of various cellular mechanisms and pathways under normal and pathological conditions. NO production, its effects, and its efficacy, are extremely sensitive to aging-related changes in the cells. Herein, we review the mechanisms of NO signaling in the cardiovascular system, central nervous system (CNS), reproduction system, as well as its effects on skin, kidneys, thyroid, muscles, and on the immune system during aging. The aging-related decline in NO levels and bioavailability is also discussed in this review. The decreased NO production by endothelial nitric oxide synthase (eNOS) was revealed in the aged cardiovascular system. In the CNS, the decline of the neuronal (n)NOS production of NO was related to the impairment of memory, sleep, and cognition. NO played an important role in the aging of oocytes and aged-induced erectile dysfunction. Aging downregulated NO signaling pathways in endothelial cells resulting in skin, kidney, thyroid, and muscle disorders. Putative therapeutic agents (natural/synthetic) affecting NO signaling mechanisms in the aging process are discussed in the present study. In summary, all of the studies reviewed demonstrate that NO plays a crucial role in the cellular aging processes.  相似文献   

14.
Breathing process involves inhalation and exhalation of different gases in animals. The gas exchange of the breathing process plays a critical role in maintaining the physiological functions of living organisms. Although artificial breathing materials exhibiting volume expansion and contraction upon alternate exposure to different gases have been well explored, those being able to realize the gas exchange remain elusive. Herein, we report breathing micelles (BM) capable of inhaling nitric oxide (NO) and exhaling carbon monoxide (CO), both of which are endogenous gaseous signaling molecules. We demonstrate that BM can simultaneously scavenge overproduced NO and attenuate proinflammatory cytokines in lipopolysaccharide (LPS)-challenged macrophage cells. In vivo studies revealed that BM outperformed conventional nonsteroidal anti-inflammatory drugs such as dexamethasone (Dexa) in treatment of rheumatoid arthritis (RA) in adjuvant-induced arthritis (AIA) rats, likely due to the combinatorial effect of NO depletion, CO-mediated deactivation of inducible NO synthase (iNOS) and activation of heme oxygenase-1 (HO-1). This work provides new insights into artificial BM for potential biomedical applications.  相似文献   

15.
A unique ruthenium(II) complex, bis(2,2′‐bipyridine)(4‐(3,4‐diaminophenoxy)‐2,2′‐bipyridine)ruthenium(II) hexafluorophosphate ([(Ru(bpy)2(dabpy)][PF6]2), has been designed and synthesized as a highly sensitive and selective luminescence probe for the imaging of nitric oxide (NO) production in living cells. The complex can specifically react with NO in aqueous buffers under aerobic conditions to yield its triazole derivative with a high reaction rate constant at the 1010 M ?1 s?1 level; this reaction is accompanied by a remarkable increase of the luminescence quantum yield from 0.13 to 2.2 %. Compared with organic probes, the new RuII complex probe shows the advantages of a large Stokes shift (>150 nm), water solubility, and a wide pH‐availability range (pH independent at pH>5). In addition, it was found that the new probe could be easily transferred into both living animal cells and plant cells by the coincubation method, whereas the triazole derivative was cell‐membrane impermeable. The probe was successfully used for luminescence‐imaging detection of the exogenous NO in mouse macrophage cells and endogenous NO in gardenia cells. The results demonstrated the efficacy and advantages of the new probe for NO detection in living cells.  相似文献   

16.
Nitric oxide (NO) is an important cell-signaling molecule whose role in a variety of cellular processes such as differentiation and apoptosis depends strongly on its concentration and flux levels. This work describes and characterizes a novel nitric oxide releasing nanocomposite, capable of photostimulated NO flux that can by dynamically modulated in within a range of biological levels. This material mimics the common compartmentalization strategies used by living cells to achieve its novel features. The material is constructed by encapsulating a photosensitive nitric oxide donor within lipid vesicles with an average diameter of 150 nm. The vesicles are then doped into the interstitial liquid phase of a solid porous silica matrix, which has previously demonstrated biological compatibility and capabilities as a growth surface for mammalian cells. Stimulation by a light source produces a step increase in NO concentration within seconds. The NO flux at the surface of the material is measured to be 14 pmol-cm(-2) sec(-1) using a NO selective self-referencing amperometric microsensor. The NO concentration profile decreases with distance perpendicular to the surface as expected for diffusion from a surface through an aqueous environment. A pattern of one minute light pulses produced uniform pulses of increased NO concentration of one minute duration. A linear relationship exists between NO surface concentration and photon flux, and this relationship can be used to tune the material response.  相似文献   

17.
《Analytical letters》2012,45(7):1321-1332
Abstract

A novel amperometric nitric oxide (NO) sensor based on a glassy carbon electrode modified with thionine and Nafion films has been developed. The oxidation peak current of NO increased significantly at the poly(thionine)/Nafion‐modified glassy carbon electrode (GCE), which can be used for the detection of NO. The oxidation peak current was linear with the concentration of nitric oxide over the range from 3.6×10?7 to 6.8×10?5 mol · L?1, and the detection limit was 7.2×10?8 mol · L?1. This nitric oxide sensor showed high selectivity to nitric oxide determination, and some potential interference could be eliminated effectively. The nitric oxide sensor has been applied to monitor NO release from rat kidney stimulated by L‐arginine. The results indicated the applicability of the NO sensor to biomedical samples.  相似文献   

18.
The purpose of this study was to identify the effect of sildenafil citrate on IL-1β-induced nitric oxide (NO) synthesis and iNOS expression in human synovial sarcoma SW982 cells. IL-1β stimulated the cells to generate NO in both dose- and time-dependent manners. The IL-1β-induced NO synthesis was inhibited by guanylate cyclase (GC) inhibitor, LY83583. When the cells were treated with 8-bromo-cGMP, a hydrolyzable analog of cGMP, NO synthesis was increased upto 5-fold without IL-1β treatment suggesting that cGMP is an essential component for increasing the NO synthesis. Synoviocytes and chondrocytes contain strong cGMP phosphodiesterase (PDE) activity, which has biochemical features of PDE5. When SW982 cells were pretreated with sildenafil citrate (Viagra), a PDE5 specific inhibitor, sildenafil citrate significantly inhibited IL-1β-induced NO synthesis and iNOS expressions. From this result, we noticed that PDE5 activity is required for IL-1β-induced NO synthesis and iNOS expressions in human synovial sarcoma cells, and sildenafil citrate may be able to suppress an inflammatory reaction of synovium through inhibition of NO synthesis and iNOS expression by cytokines.  相似文献   

19.
A supramolecular nanoassembly, of about 30 nm in diameter, that consists of a green-fluorescent, β-cyclodextrin-based, branched polymer co-encapsulating a red-emitting singlet oxygen (1O2) photosensitizer and a nitric oxide (NO) photoreleaser, which comprises a blue fluorescent reporter, is here reported. The system exhibits “five-in-one” photofunctionalities. All components can be simultaneously excited in the phototherapeutic window with two-photons by using near-infrared light at 740 nm and despite their close proximity, behave as independent units. This allows for their in vitro visualization in carcinoma cancer cells, due to their distinct green, red, and blue fluorescence, and for the production of both cytotoxic 1O2 and biofunctional NO.  相似文献   

20.
采用PVP/Pd/IrO_2/Nafion修饰电极对成纤维细胞中NO的释放情况进行了研究 。结果表明,在正常状态下,采用NO前体L-精氨酸和乙酰胆碱对成纤维细胞进行刺 激后没有NO的释放;当用脂多糖进行诱导后,则释放出高浓度的NO,加入L-精氨酸 和乙酰胆碱都促进了NO的合成,而L-NNA的加入则逆转了L-精氨酸和乙酰胆碱的作 用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号