首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Intervertebral disc degeneration (IVDD) is a major cause of low back pain (LBP), and excessive senescence and apoptosis of nucleus pulposus (NP) cells are major pathological changes in IVDD. Physical exercise could effectively delay the process of intervertebral disc degeneration; however, its mechanism is still largely unknown. Irisin is an exercise-induced myokine released upon cleavage of the membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5), and its levels increase after physical exercise. Here, we show that after physical exercise, FNDC5/irisin levels increase in the circulation and NP, senescence and apoptosis are reduced, autophagy is activated in NP tissue, and the progression of IVDD is delayed. Conversely, after knocking out FNDC5, the benefits of physical exercise are compromised. Moreover, the overexpression of FNDC5 in NP tissue effectively alleviated the degeneration of the intervertebral disc (IVD) in rats. By showing that FNDC5/irisin is an important mediator of the beneficial effects of physical exercise in the IVDD model, the study proposes FNDC5/irisin as a novel agent capable of activating autophagy and protecting NP from senescence and apoptosis.Subject terms: Endocrinology, Diseases, Bone  相似文献   

2.
Irisin is a recently discovered protein hormone with a conserved sequence among vertebrates and with putative functions in the regulation of adipose tissue and bone metabolism. We report the first chemical synthesis using two sequential ketoacid‐hydroxylamine (KAHA) ligations to give milligram quantities of unlabeled and fluorescence‐labeled irisin protein. The synthetic proteins were utilized in cell binding assays, which indicated the expected binding characteristics to stromal cells of white adipose tissue. These studies strongly imply the presence of a specific irisin receptor and provide a path to its identification with synthetic irisin.  相似文献   

3.
4.
HSPB5 or alpha B-crystallin (CRYAB), originally identified as lens protein, is one of the most widespread and represented of the human small heat shock proteins (sHSPs). It is greatly expressed in tissue with high rates of oxidative metabolism, such as skeletal and cardiac muscles, where HSPB5 dysfunction is associated with a plethora of human diseases. Since HSPB5 has a major role in protecting muscle tissues from the alterations of protein stability (i.e., microfilaments, microtubules, and intermediate filament components), it is not surprising that this sHSP is specifically modulated by exercise. Considering the robust content and the protective function of HSPB5 in striated muscle tissues, as well as its specific response to muscle contraction, it is then realistic to predict a specific role for exercise-induced modulation of HSPB5 in the prevention of muscle diseases caused by protein misfolding. After offering an overview of the current knowledge on HSPB5 structure and function in muscle, this review aims to introduce the reader to the capacity that different exercise modalities have to induce and/or activate HSPB5 to levels sufficient to confer protection, with the potential to prevent or delay skeletal and cardiac muscle disorders.  相似文献   

5.
Deferoxamine B is an outstanding molecule which has been widely studied in the past decade for its ability to bind iron and many other metal ions. The versatility of this metal chelator makes it suitable for a number of medicinal and analytical applications, from the well-known iron chelation therapy to the most recent use in sensor devices. The three bidentate hydroxamic functional groups of deferoxamine B are the centerpiece of its metal binding ability, which allows the formation of stable complexes with many transition, lanthanoid and actinoid metal ions. In addition to the ferric ion, in fact, more than 20 different metal complexes of deferoxamine b have been characterized in terms of their chemical speciation in solution. In addition, the availability of a terminal amino group, most often not involved in complexation, opens the way to deferoxamine B modification and functionalization. This review aims to collect and summarize the available data concerning the complex-formation equilibria in solutions of deferoxamine B with different metal ions. A general overview of the progress of its applications over the past decade is also discussed, including the treatment of iron overload-associated diseases, its clinical use against cancer and neurodegenerative disorders and its role as a diagnostic tool.  相似文献   

6.
7.
The vascular endothelial growth factor 165 (VEGF165) is the predominant form of the complex VEGF family. This glycoprotein has, among others, an angiogenic effect in many physiological and pathological events. For this reason, its roles as a biomarker and as a therapeutic drug have been considered. However, very little is known about the existence of different forms of VEGF165 arising from glycosylation and other potential PTMs. This aspect is crucial because it is known that for other glycoproteins the ratio between these isoforms actually acts as a biomarker for certain diseases and other physiological states. In addition, for therapeutic use of glycoproteins it is known that the biological activity may differ for the various isoforms. In this work CE methods to separate up to seven peaks without baseline resolution containing various forms of VEGF165 are developed. Using a computer program previously developed in‐house peak assignment could be performed with accuracy close to 100%. In this way, comparison between recombinant human VEGF165 expressed in insect cells, which is a glycosylating system, and in Escherichia coli cells, which are unable of performing glycosylation of proteins, has been possible. The methods developed, besides providing information about the existence of several forms of VEGF165, mean a starting point that permits the study of the role of VEGF165 as a potential biomarker of different diseases and physiological processes and to perform quality control of the recombinant drug during manufacturing. To the best of our knowledge this is the first time that CE methods for VEGF165 have been developed.  相似文献   

8.
Proteins play a crucial role in life, taking part in all vital processes in the body. In the past decade, there was increasing interest in delivering active forms of proteins to specific cells and organs. Intracellular protein delivery holds enormous promise for biological and medical applications, including cancer therapy, vaccination, regenerative medicine, treatment for loss-of-function genetic diseases and imaging. This tutorial review surveys recent developments in intracellular protein delivery using various nanocarriers. Methods such as lipid-mediated colloidal systems, polymeric nanocarriers, inorganic systems and protein-mediated carriers are reviewed. Advantages and limitations of current strategies, as well as future opportunities and challenges are also discussed.  相似文献   

9.
Li  He  Liu  Yadong 《Cellulose (London, England)》2022,29(6):3035-3058
Cellulose - Recent progress in stem cell technology and its successful translation into clinical procedures have shed new light in treating various diseases. Indeed, the past decade witnessed an...  相似文献   

10.
11.
The development of novel sample preparation media plays a crucial role in pharmaceutical analysis. To facilitate the extraction and enrichment of pharmaceutical molecules in complex samples, various functionalized materials have been developed and prepared as adsorbents. Recently, some functionalized porous organic materials have become adsorbents for pharmaceutical analysis due to their unique properties of adsorption and recognition. These advanced porous organic materials, combined with consequent analytical techniques, have been successfully used for pharmaceutical analysis in complex samples such as environmental and biological samples. This review encapsulates the progress of advanced porous materials for pharmaceutical analysis including pesticides, antibiotics, chiral drugs, and other compounds in the past decade. In addition, we also address the limitations and future trends of these porous organic materials in pharmaceutical analysis.  相似文献   

12.
Holmes E  Antti H 《The Analyst》2002,127(12):1549-1557
The pharmaceutical industry has embraced emerging technologies such as genomics, proteomics and metabonomics over the past decade with a view to minimizing attrition and expanding drug development pipelines. Metabonomic technology, based on the multivariate analysis of complex biological profiles generated from spectroscopic instruments, has enabled the construction of successful expert systems for toxicity screening and disease diagnosis. Here we describe the evolution of chemometric and bioinformatic methodologies to accommodate the multi- and megavariate data generated by high resolution NMR spectroscopy of biofluids, tissues and cell cultures and explore their potential role in mining, modeling and predicting metabolic data.  相似文献   

13.
Most common diseases appear to result from complex, poorly understood interactions between genetic and environmental factors. Relatively few factors have been unequivocally linked with disease risk or outcome. Evidence from various studies using different experimental approaches has been interpreted as showing that, apart from its harmful effects on the pathogenesis of the common skin cancers, ultraviolet radiation (UVR) may exert a beneficial effect on development of various internal cancers and other pathologies. This concept is supported by parallel studies showing that hypovitaminosis D is linked with increased risk of various diseases including insulin resistance and multiple sclerosis. These findings suggest that, first, host factors such as skin pigmentation that affect UVR-induced synthesis of vitamin D and, second, polymorphism in genes that mediate the effectiveness of vitamin D action are susceptibility candidates for a variety of diseases. Collectively, these data suggest the hypothesis that, via effects on vitamin D synthesis, UVR exposure has beneficial effects on susceptibility and outcome to a variety of complex diseases. We describe evidence from studies in various diseases, but mainly from prostate cancer patients, that supports this hypothesis, but we emphasize that, although supportive data are available, the concept is unproven. Indeed, other explanations are possible. However, given the potentially important public health implications of the hypothesis and the potential for the development of novel therapeutic modalities, we believe the concept is worthy of further investigation.  相似文献   

14.
15.
Ultraviolet radiation (UVR) exposure to internal tissues for diagnostic, therapeutic and cosmetic procedures has increased dramatically over the past decade. The greatest increase in UVR exposure of internal tissues occurs in the cosmetic industry where it is combined with oxidizing agents for teeth whitening, often in conjunction with indoor tanning. To address potential carcinogenic risks of these procedures, we analyzed the formation and repair of the DNA photoproducts associated with the signature mutations of UVR. Radioimmunoassay was used to quantify the induction and repair of cyclobutane pyrimidine dimers and pyrimidine(6-4)pyrimidone photoproducts in DNA purified from three reconstructed tissues, EpiDerm(TM) , EpiGingival(TM) and EpiOral(TM) . We observed comparable levels of DNA damage in all tissues immediately after UVR exposure. In contrast, repair was significantly reduced in both oral tissues compared with EpiDerm(TM) . Our data suggest that UVR exposure of oral tissues can result in accumulation of DNA damage and increase the risk for carcinoma and melanoma of the mouth. Because NER is a broad-spectrum defense against DNA damage caused by a variety of agents in addition to UVR, our data suggest that the relatively low NER efficiency observed in oral tissues may have wide-ranging consequences in this highly exposed environment.  相似文献   

16.
Over the past decade, biopolymers have gained great interests especially in biomedicine due to their physical properties and/or chemical structures changes in response to external stimuli in a certain time frame or at a specific location. Among them,poly(β-amino ester)s, methacrylate-based block copolymers and polypeptide with tertiary amine groups have been extensively studied and exhibit pH sensitive properties due to the protonation of tertiary amine groups. The pH values in normal organs,tissues, and subcellular compartments are always different from those in pathological tissues. These interesting properties allow their applications in a variety of fields ranging from diagnosis and therapeutics of diseases. Here, we review the recent progress of poly(β-amino ester)s, methacrylate-based block copolymers and polypeptide with tertiary amine groups and their applications in drug delivery and bioimaging.  相似文献   

17.
Resistant starches and health   总被引:3,自引:0,他引:3  
It was initially hypothesized that resistant starches, i.e., starch that enters the colon, would have protective effects on chronic colonic diseases, including reduction of colon cancer risk and in the treatment of ulcerative colitis. Recent studies have confirmed the ability of resistant starch to increase fecal bulk, increase the molar ratio of butyrate in relation to other short-chain fatty acids, and dilute fecal bile acids. However the ability of resistant starch to reduce luminal concentrations of compounds that are damaging to the colonic mucosa, including fecal ammonia, phenols, and N-nitroso compounds, still requires clear demonstration. As such, the effectiveness of resistant starch in preventing or treating colonic diseases remains to be assessed. Nevertheless, there is a fraction of what has been termed resistant (RS1) starch, which enters the colon and acts as slowly digested or lente carbohydrate in the small intestine. Foods in this class are low glycemic index and have been shown to reduce the risk of chronic disease. They have been associated with systemic physiological effects such as reduced postprandial insulin levels and higher HDL cholesterol levels. Consumption of low glycemic index foods has been shown to be related to reductions in risk of coronary heart disease and Type 2 diabetes. Type 2 diabetes has in turn been related to a higher risk of colon cancer. If carbohydrates have a protective role in colon cancer prevention this may lie partly in the systemic effects of low glycemic index foods. The colonic advantages of different carbohydrates, varying in their glycemic index and resistant starch content, therefore, remain to be determined. However, as recent positive research findings continue to mount, there is reason for optimism over the possible health advantages of those resistant starches, which are slowly digested in the small intestine.  相似文献   

18.
Delaying the human aging process and thus eliminating the risk factors for age-related diseases is one of the prime objectives. While various aging-associated genes and proteins have been characterized, which provide a significant understanding of the human aging process, a significant success in regulating aging is not achieved yet. Understanding how aging proteins interact with each other and also with other proteins could provide important insights into the underlying mechanisms governing the aging process. Therefore, in this work, information of gene expression was included to the static aging-related protein interactome to understand the network-based relationships among aging-related essential (AE) proteins, aging-related non-essential (ANE) proteins, and housekeeping-proteins that could regulate or influence aging. Comprehensive analyses provided various systems-level insights into the regulatory characteristics of aging; for example, (i) network-based correlation analysis predicted functional relationships among AE proteins and ANE proteins; (ii) network variability analysis predicted aging to affect different tissues in strikingly different ways by differentially regulating various regulatory interactions; (iii) cross-network comparisons identified two aging-related modules to be significantly conserved across most of the tissues. Overall, the findings obtained during this study could be helpful for researchers to delay, prevent, or even reverse various aspects of the aging.  相似文献   

19.
Short interfering RNA (siRNA) functions directly in the cytoplasm, where it is assembled into an RNA-induced silencing complex (RISC). The localized delivery of siRNA to a specific site in vivo is highly challenging. There are many disease states in which a systemic effect of RNAi may be desirable; some examples include non-localized cancers, HIV, neurodegenerative diseases, respiratory viruses, and heart and vascular disease. In this Concept, we will focus on the localized delivery of siRNA to a target site using various delivery modalities. In certain tissues, such as the eye, central nervous system and lung, it has been demonstrated that a simple injection of naked siRNA will silence gene expression specifically in that tissue. To achieve local gene silencing in other tissues, a variety of approaches have been pursued to help stabilize the siRNA and facilitate uptake; they include chemical modification of the siRNA or complexation within liposomes or polymers to form nanoparticles. Recently, the use of macroscopic biomaterial scaffolds for siRNA delivery has been reported, and although there is still significant work to be done in this area to optimize the delivery systems, it is an important area of research that offers the potential for having great impact on the field of siRNA delivery.  相似文献   

20.
Vibrio spp. are pathogens of many bacterial diseases which have caused great economic losses in marine aquaculture. The strategy of alternative medical treatment that is utilised by herbalists has expanded in the past decade. The aim of our study is to discover the antibacterial molecules against Vibrio spp. Bacterial growth inhibition, membrane permeabilisation assessment and DNA interaction assays, as well as agarose gel electrophoresis, were employed to elucidate the antibacterial activity of hydroxytyrosol acetate. Results showed that hydroxytyrosol acetate had antibacterial activity against Vibrio spp. and it played the role via increasing bacterial membrane permeabilisation. The DNA interaction assay and agarose gel electrophoresis revealed that hydroxytyrosol acetate interacted with DNA. Hydroxytyrosol acetate enhanced the fluorescent intensity of DNA binding molecules and mediated supercoiled DNA relaxation. The present study provides more evidence that hydroxytyrosol acetate is a novel antibacterial candidate against Vibrio spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号