首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
This study aimed to evaluate the antibacterial activity in vitro of Salpianthus macrodontus and Azadirachta indica extracts against potentially pathogenic bacteria for Pacific white shrimp. Furthermore, the extracts with higher inhibitory activity were analyzed to identify compounds responsible for bacterial inhibition and evaluate their effect on motility and biofilm formation. S. macrodontus and A. indica extracts were prepared using methanol, acetone, and hexane by ultrasound. The minimum inhibitory concentration (MIC) of the extracts was determined against Vibrio parahaemolyticus, V. harveyi, Photobacterium damselae and P. leiognathi. The polyphenol profile of those extracts showing the highest bacterial inhibition were determined. Besides, the bacterial swimming and swarming motility and biofilm formation were determined. The highest inhibitory activity against the four pathogens was found with the acetonic extract of S. macrodontus leaf (MIC of 50 mg/mL for Vibrio spp. and 25 mg/mL for Photobacterium spp.) and the methanol extract of S. macrodontus flower (MIC of 50 mg/mL for all pathogens tested). Both extracts affected the swarming and swimming motility and the biofilm formation of the tested bacteria. The main phenolic compounds related to Vibrio bacteria inhibition were naringin, vanillic acid, and rosmarinic acid, whilst hesperidin, kaempferol pentosyl-rutinoside, and rhamnetin were related to Photobacterium bacteria inhibition.  相似文献   

2.
Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography–mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates  相似文献   

3.
Biofilm control by essential oil (EO) application has recently increased to preclude biofilm production on foods and environmental surfaces. In this work, the anti-biofilm effects of garlic and thyme essential oils using the minimum inhibitory concentration (MIC) method against Salmonella typhimurium recovered from different abattoir samples were investigated along with the virulence genes (InvA, SdiA and Stn genes), and the antimicrobial susceptibility profile of S. typhimurium as well. The obtained results revealed that S. typhimurium contaminated abattoir samples to varying degrees. The InvA gene was investigated in all isolates, whereas the SdiA and Stn genes were observed in four and three isolates, respectively. Utilizing the disc diffusion method, S. typhimurium isolates demonstrated substantial resistance to most of the examined antibiotics with a high multiple antibiotic resistance index. S. typhimurium isolates demonstrated biofilm formation abilities to various degrees at varied temperatures levels (4 °C and 37 °C). In conclusion, the obtained samples from the research area are regarded as a potential S. typhimurium contamination source. Furthermore, garlic essential oil (GEO) has more potential to inhibit S. typhimurium biofilm at different sub-minimum inhibitory concentrations as compared to thyme essential oil (TEO). Therefore, these EOs are considered as potential natural antibacterial options that could be applied in food industry.  相似文献   

4.
Background: The current work planned to evaluate Cordia africana Lam. stem bark, a traditionally used herb in curing of different ailments in Africa such as gastritis and wound infections, based on phytochemical and antibacterial studies of two pathogenic microorganisms: methicillin-resistant Staphylococcus aureus (MRSA) and Helicobacter pylori. Methods: High performance liquid chromatography (HPLC) profiling was used for qualitative and quantitative investigation of the ethanol extract. The minimum inhibitory concentration (MIC) of the ethanolic extract and isolated compounds was estimated using the broth microdilution method and evidenced by molecular dynamics simulations. Results: Four compounds were isolated and identified for the first time: α-amyrin, β-sitosterol, rosmarinic acid (RA) and methyl rosmarinate (MR). HPLC analysis illustrated that MR was the dominant phenolic acid. MR showed the best bacterial inhibitory activity against MRSA and H. pylori with MIC 7.81 ± 1.7 μg/mL and 31.25 ± 0.6, respectively, when compared to clarithromycin and vancomycin, respectively. Conclusion: The antibacterial activity of the stem bark of Cordia africana Lam. was evidenced against MRSA and H. pylori. Computational modeling of the studied enzyme-ligands systems reveals that RA and MR can potentially inhibit both MRSA peptidoglycan transpeptidases and H. pylori urease, thereby creating a pathway via the use of a double target approach in antibacterial treatment.  相似文献   

5.
This work was undertaken to explore the phytochemical composition, antioxidant, and enzyme-inhibiting properties of Neurada procumbens L. extracts/fractions of varying polarity (methanol extract and its fractions including n-hexane, chloroform, n-butanol, and aqueous fractions). A preliminary phytochemical study of all extracts/fractions, HPLC-PDA polyphenolic quantification, and GC-MS analysis of the n-hexane fraction were used to identify the phytochemical makeup. Antioxidant (DPPH), enzyme inhibition (against xanthine oxidase, carbonic anhydrase, and urease enzymes), and antibacterial activities against seven bacterial strains were performed for biological investigation. The GC-MS analysis revealed the tentative identification of 22 distinct phytochemicals in the n-hexane fraction, the majority of which belonged to the phenol, flavonoid, sesquiterpenoid, terpene, fatty acid, sterol, and triterpenoid classes of secondary metabolites. HPLC-PDA analysis quantified syringic acid, 3-OH benzoic acid, t-ferullic acid, naringin, and epicatechin in a significant amount. All of the studied extracts/fractions displayed significant antioxidant capability, with methanol extract exhibiting the highest radical-scavenging activity, as measured by an inhibitory percentage of 81.4 ± 0.7 and an IC50 value of 1.3 ± 0.3. For enzyme inhibition experiments, the n-hexane fraction was shown to be highly potent against xanthine oxidase and urease enzymes, with respective IC50 values of 2.3 ± 0.5 and 1.1 ± 0.4 mg/mL. Similarly, the methanol extract demonstrated the strongest activity against the carbonic anhydrase enzyme, with an IC50 value of 2.2 ± 0.4 mg/mL. Moreover, all the studied extracts/fractions presented moderate antibacterial potential against seven bacterial strains. Molecular docking of the five molecules β-amyrin, campesterol, ergosta-4,6,22-trien-3β-ol, stigmasterol, and caryophyllene revealed the interaction of these ligands with the investigated enzyme (xanthine oxidase). The results of the present study suggested that the N. procumbens plant may be evaluated as a possible source of bioactive compounds with multifunctional therapeutic applications.  相似文献   

6.
Two new Schiff base zinc(II) complexes, [ZnBr2L] (I) and [ZnCl2L] (II), where L is 4-bromo-2-[(3-diethylaminopropylimino)methyl]phenol, were synthesized and characterized by physico-chemical methods and single crystal X-ray diffraction. The crystal of I is monoclinic: space group P21/n a = 7.250 (2), b = 16.136 (3), c = 15.802 (3) Å, β = 90.027 (3)°, V = 1848.6 (7) Å3, Z = 4. The crystal of II is monoclinic: space group P21/n, a = 7.177 (3), b = 15.970 (4), c = 15.689 (3), β = 91.674 (3)°, V = 1797.5 (9) Å3, Z = 4. The Zn atom in each complex is four-coordinated by one phenolate O and one imine N atoms of the Schiff base ligand and two halide atoms, forming a tetrahedral coordination. The urease inhibitory activities of the complexes were evaluated.  相似文献   

7.
The current study aimed to explore the crude oils obtained from the n-hexane fraction of Scutellaria edelbergii and further analyzed, for the first time, for their chemical composition, in vitro antibacterial, antifungal, antioxidant, antidiabetic, and in vivo anti-inflammatory, and analgesic activities. For the phytochemical composition, the oils proceeded to gas chromatography-mass spectrometry (GC-MS) analysis and from the resultant chromatogram, 42 bioactive constituents were identified. Among them, the major components were linoleic acid ethyl ester (19.67%) followed by ethyl oleate (18.45%), linolenic acid methyl ester (11.67%), and palmitic acid ethyl ester (11.01%). Tetrazolium 96-well plate MTT assay and agar-well diffusion methods were used to evaluate the isolated oil for its minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC), half-maximal inhibitory concentrations (IC50), and zone of inhibitions that could determine the potential antimicrobial efficacy’s. Substantial antibacterial activities were observed against the clinical isolates comprising of three Gram-negative bacteria, viz., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and one Gram-positive bacterial strain, Enterococcus faecalis. The oils were also effective against Candida albicans and Fusarium oxysporum when evaluated for their antifungal potential. Moreover, significant antioxidant potential with IC50 values of 136.4 and 161.5 µg/mL for extracted oil was evaluated through DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays compared with standard ascorbic acid where the IC50 values were 44.49 and 67.78 µg/mL, respectively, against the tested free radicals. The oils was also potent, inhibiting the α-glucosidase (IC50 5.45 ± 0.42 µg/mL) enzyme compared to the standard. Anti-glucosidase potential was visualized through molecular docking simulations where ten compounds of the oil were found to be the leading inhibitors of the selected enzyme based on interactions, binding energy, and binding affinity. The oil was found to be an effective anti-inflammatory (61%) agent compared with diclofenac sodium (70.92%) via the carrageenan-induced assay. An appreciable (48.28%) analgesic activity in correlation with the standard aspirin was observed through the acetic acid-induced writhing bioassay. The oil from the n-hexane fraction of S. edelbergii contained valuable bioactive constituents that can act as in vitro biological and in vivo pharmacological agents. However, further studies are needed to uncover individual responsible compounds of the observed biological potentials which would be helpful in devising novel drugs.  相似文献   

8.
9.
Biomineral formation is a common trait and prominent for soil Actinobacteria, including the genus Streptomyces. We investigated the formation of nickel-containing biominerals in the presence of a heavy-metal-resistant Streptomyces mirabilis P16B-1. Biomineralization was found to occur both in solid and liquid media. Minerals were identified with Raman spectroscopy and TEM-EDX to be either Mg-containing struvite produced in media containing no nickel, or Ni-struvite where Ni replaces the Mg when nickel was present in sufficient concentrations in the media. The precipitation of Ni-struvite reduced the concentration of nickel available in the medium. Therefore, Ni-struvite precipitation is an efficient mechanism for tolerance to nickel. We discuss the contribution of a plasmid-encoded nickel efflux transporter in aiding biomineralization. In the elevated local concentrations of Ni surrounding the cells carrying this plasmid, more biominerals occurred supporting this point of view. The biominerals formed have been quantified, showing that the conditions of growth do influence mineralization. This control is also visible in differences observed to biosynthetically synthesized Ni-struvites, including the use of sterile-filtered culture supernatant. The use of the wildtype S. mirabilis P16B-1 and its plasmid-free derivative, as well as a metal-sensitive recipient, S. lividans, and the same transformed with the plasmid, allowed us to access genetic factors involved in this partial control of biomineral formation.  相似文献   

10.
Gastrointestinal tract infection caused by Helicobacter pylori is a common virulent disease found worldwide, and the infection rate is much higher in developing countries than in developed ones. In the pathogenesis of H. pylori in the gastrointestinal tract, the secretion of the urease enzyme plays a major role. Therefore, inhibition of urease is a better approach against H. pylori infection. In the present study, a series of syn and anti isomers of N-substituted indole-3-carbaldehyde oxime derivatives was synthesized via Schiff base reaction of appropriate carbaldehyde derivatives with hydroxylamine hydrochloride. The in vitro urease inhibitory activities of those derivatives were evaluated against that of Macrotyloma uniflorum urease using the modified Berthelot reaction. Out of the tested compounds, compound 8 (IC50 = 0.0516 ± 0.0035 mM) and compound 9 (IC50 = 0.0345 ± 0.0008 mM) were identified as the derivatives with potent urease inhibitory activity with compared to thiourea (IC50 = 0.2387 ± 0.0048 mM). Additionally, in silico studies for all oxime compounds were performed to investigate the binding interactions with the active site of the urease enzyme compared to thiourea. Furthermore, the drug-likeness of the synthesized oxime compounds was also predicted.  相似文献   

11.
For the first time, we reported the phytochemical composition of the volatile oil from Thymus musilii Velen (T. musilii). The antioxidant and antimicrobial activities against various food-borne and clinical pathogenic microorganisms were also tested. The thyme oil was particularly rich in thymol (67.697 ± 0.938%), and thymyl acetate (12.993 ± 0.221%). The strongest antioxidant activity of the essential oil was registered with the tests: ABTS (IC50 = 5.6 × 10−4 mg/mL) and β-carotene/linoleic acid (IC50 = 3.2 × 10−3 mg/mL). This thymol-chemotype oil was active against all microorganisms tested with an inhibition growth zone ranging from 21.33 ± 1.52 mm for Proteus mirabilis (P. mirabilis) to 37.33 ± 1.15 mm for Candida vaginalis (C. vaginalis) strain. Overall, the tested oil exhibited bactericidal and fungicidal activities and only a small quantity of the tested essential oil was found to be sufficient for inhibiting the growth of the tested microorganisms. Furthermore, molecular docking results implies that, among the bioactive compounds, β-caryophyllene interacted strongly with the active site residues of TyrRS, GLMS and Gyrase enzymes and consequently support our in vitro results with the highest inhibition potential of this essential oil against tested pathogens, especially Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Our results suggested that essential oil of T. musiliii exhibited strong biological activities with a promising source of various natural compounds.  相似文献   

12.
A new mononuclear cobalt(III) complex, [CoL2(N3)]2 · CH3OH (I), and a new mononuclear zinc(II) complex, [ZnLCl(CH3OH)] (II) (HL = 4-chloro-2-[(2-morpholin-4-ylethylimino)methyl]phenol), were prepared and structurally characterized by elemental analyses, infrared spectroscopy, and single- crystal X-ray diffraction. The crystal of I is monoclinic: space group P21/c, a = 18.742(2) Å, b = 15.197(2) Å, c = 25.646(2) Å, β = 125.996(3)°, V = 5909.8(11) Å3, Z = 4. The crystal of II is monoclinic: space group P21/c, a = 7.257(1) Å, b = 24.707(2) Å, c = 9.637(1) Å, β = 101.557(2)°, V = 1692.9(3) Å3, Z = 4. The Co atom in I is in an octahedral coordination, and the Zn atom in II is in a trigonal-bipyramidal coordination. The urease inhibitory test shows that complex I has strong urease inhibitory activity, while complex II has no activity.  相似文献   

13.
Bacterial drug resistance is a challenge in clinical settings, especially in countries like India. Hence, discovery of novel alternative therapeutics has become a necessity in the fight against drug resistance. Compounds that inhibit bacterial virulence properties form new therapeutic alternatives. Pseudomonas aeruginosa is an opportunistic, nosocomial pathogen that infects immune-compromised patients. Swarming motility is an important virulence property of Pseudomonas which aids it in reaching host cells under nutrient limiting conditions. Here, we report the screening of five plant extracts against swarming motility of P. aeruginosa and show that methanol extracts of Alpinia officinarum and Cinnamomum tamala inhibit swarming motility at 5 μg mL?1 without inhibiting its growth. These extracts did not inhibit swimming and twitching motilities indicating a mode of action specific to swarming pathway. Preliminary experiments indicated that rhamnolipid production was not affected. This study reveals the potential of the two plants in anti-virulence drug discovery.  相似文献   

14.
This study was designed to investigate in vitro biological activities and phytochemical composition of aqueous and ethanolic extracts from Achillea sintenisii Hub- Mor. (AS). To determine the chemical composition of AS extracts, phytochemical analyses were performed by using HPLC–ESI-Q-TOF-MS-MS. Afterwards, both extracts were investigated in terms of their effect on fibroblast proliferation, collagen synthesis, and hydrogen peroxide-induced damage. In addition to cell culture analysis, antibacterial, antioxidant, hyaluronidase inhibitory activities and total phenolic contents of the extracts were analyzed in cell-free systems. Our results demonstrated that the aqueous and ethanolic extracts did not show cytotoxic activity on fibroblasts, on the contrary, promoted fibroblast proliferation. Both AS extracts potently inhibited hyaluronidase activity and the inhibitory effect of ethanolic extract was comparable with the positive control, especially at high concentrations. The aqueous extract was the potent stimulator of collagen synthesis at 200 µg/mL concentration. Although the ethanolic extract showed antibacterial activity against all gram-positive bacteria, the aqueous extract was only effective against K. pneumoniae and B. subtilis. The ability of AS extracts, which have a rich phenolic compound content (≥50 mg GAE/g), to scavenge free radicals and protect fibroblasts against hydrogen peroxide-induced damage can be considered as a result of their antioxidant potential. Our findings scientifically support the widespread use of this plant, by demonstrating the pharmacological properties of the extracts.  相似文献   

15.
This work focused on the leaves of Dittrichia viscosa, a plant used in Mediterranean folk medicine. Compared to water extract, the methanolic extract had higher antioxidant effects. Moreover, this extract showed potent in vitro inhibitory activity against α-amylase and α-glucosidase and showed an interesting antiglycation effect. Additionally, the evaluation of the cytotoxic activity of the methanolic extract against two human breast cancer cell lines, MCF-7 and MDA-MB-468, was very promising, with no cytotoxicity towards normal cells (peripheral blood mononuclear cells (PBMCs). The antibacterial effect was also assessed and showed potent inhibitory activity against Proteus mirabilis and Bacillus subtilis. On the other hand, Dittrichia viscosa leaves were rich in macro-elements containing appropriate micro-elements and high levels of phenolics and flavonoids such as caffeic acid derivatives. Taken together, the results obtained in this study indicate that Dittrichia viscosa could constitute a valuable source of bioactive molecules and could be used either on the preventive side or for therapeutic applications without toxicity.  相似文献   

16.

Background  

Sonchus asper (SA) is traditionally used for the treatment of various ailments associated with liver, lungs and kidneys. This study was aimed to investigate the therapeutic potential of nonpolar (hexane, SAHE; ethyl acetate, SAEE and chloroform, SACE) and polar (methanol, SAME) crude extracts of the whole plant.  相似文献   

17.
The phytochemical composition of leaves, stems, pericarps and rhizomes ethanolic extracts of Asparagus acutifolius were characterized by HPLC-DAD-MS. A. acutifolius samples contain at least eleven simple phenolics, one flavonon, two flavonols and six steroidal saponins. The stem extracts showed the highest total phenolic acid and flavonoid contents, where cafeic acid and rutin were the main compounds. No flavonoids were detected in the leaf, pericarp or rhizome while caffeic acid and ferulic acid were the predominant. Steroidal saponins were detected in the different plant parts of A. acutifolius, and the highest contents were found in the rhizome extracts. The stem extracts exhibited the highest antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) and the highest 2,2-azino-bis (3 ethylbenzothiazoline-6-sulphonic acid) (ABTS) scavenging activity was found in the pericarp extracts. The rhizome and leaf extracts showed a potent cytotoxic activity against HCT-116 and HepG2 cell lines. Moreover, the pericarp and rhizome extracts revealed a moderate lipase inhibitory activity. The leaf and rhizome extracts were screened for their antimicrobial activity against human pathogenic isolates. The leaf extract exhibited a powerful inhibitory activity against all the bacteria and fungi tested.  相似文献   

18.
The aim of this study was to devise a method to protect Chinese cabbage (Brassica chinensis) and lettuce (Lactuca sativa) from bacterial-disease-induced damage during storage. Thus, the potential of rhapontigenin as a quorum sensing (QS) inhibitor against Pectobacterium carotovorum subsp. carotovorum (P. carotovorum) was evaluated. The QS inhibitory effects of rhapontigenin were confirmed by significant inhibition of the production of violacein in Chromobacterium violaceum CV026 (C. violaceum, CV026). The inhibitory effects of rhapontigenin on the motility, exopolysaccharide (EPS) production, biofilm formation and virulence–exoenzyme synthesis of P. carotovorum were investigated. Acyl-homoserine lactones (AHLs) were quantified using liquid chromatography–mass spectrometry (LC–MS). The inhibitory effects of rhapontigenin on the development of biofilms were observed using fluorescence microscopy and scanning electron microscopy (SEM). A direct-inoculation assay was performed to investigate the QS inhibitory effects of rhapontigenin on P. carotovorum in Chinese cabbage and lettuce. Our results demonstrated that rhapontigenin exhibited significant inhibition (p < 0.05) of the motility, EPS production, biofilm formation, virulence–exoenzyme synthesis and AHL production of P. carotovorum. Additionally, the result of the direct-inoculation assay revealed that rhapontigenin might provide vegetables with significant shelf-life extension and prevent quality loss by controlling the spread of soft-rot symptoms. Consequently, the study provided a significant insight into the potential of rhapontigenin as a QS inhibitor against P. carotovorum.  相似文献   

19.
The current study was intended to explore the phytochemical profiling and therapeutic activities of Putranjiva roxburghii Wall. Crude extracts of different plant parts were subjected to the determination of antioxidant, antimicrobial, antidiabetic, cytotoxic, and protein kinase inhibitory potential by using solvents of varying polarity ranges. Maximum phenolic content was notified in distilled water extracts of the stem (DW-S) and leaf (DW-L) while the highest flavonoid content was obtained in ethyl acetate leaf (EA-L) extract. HPLC-DAD analysis confirmed the presence of various polyphenols, quantified in the range of 0.02 ± 0.36 to 2.05 ± 0.18 μg/mg extract. Maximum DPPH scavenging activity was expressed by methanolic extract of the stem (MeOH-S). The highest antioxidant capacity and reducing power was shown by MeOH-S and leaf methanolic extract (MeOH-L), respectively. Proficient antibacterial activity was shown by EA-L extract against Bacillus subtilis and Escherichia coli. Remarkable α-amylase and α-glucosidase inhibition potential was expressed by ethyl acetate fruit (EA-F) and n-Hexane leaf (nH-L) extracts, respectively. In case of brine shrimp lethality assay, 41.67% of the extracts (LC50 < 50 µg/mL) were considered as extremely cytotoxic. The test extracts also showed mild antifungal and protein kinase inhibition activities. The present study explores the therapeutic potential of P. roxburghii and calls for subsequent studies to isolate new bioactive leads through bioactivity-guided isolation.  相似文献   

20.
Rosa roxburghii Tratt, a Rosaceae plant endemic to China, produces fruit with high nutritional and medicinal value. The effects of R. roxburghii must on the growth, nutrient composition, and antioxidant activity of Pleurotus ostreatus mycelia was investigated. We measured the mycelial growth rate, proximate composition, amino acid and crude polysaccharide content, and the antioxidant activity of the crude polysaccharides of P. ostreatus mycelia cultivated under different concentrations of R. roxburghii must (2%, 4%, and 8%, v/v). Low concentrations of R. roxburghii must (2% and 4%) promoted mycelial growth, while a high concentration (8%) inhibited mycelial growth. Low concentrations of R. roxburghii must had no significant effects on the soluble substances, fat, ash, and crude fiber in P. ostreatus mycelia, but significantly increased the crude protein and total amino acid contents (p < 0.05). The addition of R. roxburghii must at low concentrations significantly increased the crude polysaccharide content in mycelia (p < 0.05) but had no impact on the scavenging of hydroxyl radicals and 2,2-diphenyl-1-picrylhydrazyl (DPPH). Therefore, R. roxburghii must at low concentration can be used as a substrate for P. ostreatus cultivation to increase the protein and polysaccharide contents in mycelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号