首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green extraction techniques (GreETs) emerged in the last decade as greener and sustainable alternatives to classical sample preparation procedures aiming to improve the selectivity and sensitivity of analytical methods, simultaneously reducing the deleterious side effects of classical extraction techniques (CETs) for both the operator and the environment. The implementation of improved processes that overcome the main constraints of classical methods in terms of efficiency and ability to minimize or eliminate the use and generation of harmful substances will promote more efficient use of energy and resources in close association with the principles supporting the concept of green chemistry. The current review aims to update the state of the art of some cutting-edge GreETs developed and implemented in recent years focusing on the improvement of the main analytical features, practical aspects, and relevant applications in the biological, food, and environmental fields. Approaches to improve and accelerate the extraction efficiency and to lower solvent consumption, including sorbent-based techniques, such as solid-phase microextraction (SPME) and fabric-phase sorbent extraction (FPSE), and solvent-based techniques (μQuEChERS; micro quick, easy, cheap, effective, rugged, and safe), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), in addition to supercritical fluid extraction (SFE) and pressurized solvent extraction (PSE), are highlighted.  相似文献   

2.
The detection of analytes in complex organic matrices requires a series of analytical steps to obtain a reliable analysis. Sample preparation can be the most time-consuming, prolonged, and error-prone step, reducing the reliability of the investigation. This review aims to discuss the advantages and limitations of extracting bioactive compounds, sample preparation techniques, automation, and coupling with on-line detection. This review also evaluates all publications on this topic through a longitudinal bibliometric analysis, applying statistical and mathematical methods to analyze the trends, perspectives, and hot topics of this research area. Furthermore, state-of-the-art green extraction techniques for complex samples from vegetable matrices coupled with analysis systems are presented. Among the extraction techniques for liquid samples, solid-phase extraction was the most common for combined systems in the scientific literature. In contrast, for on-line extraction systems applied for solid samples, supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, and pressurized liquid extraction were the most frequent green extraction techniques.  相似文献   

3.
Mycotoxin contamination is a globally concerned problem for food and agricultural products since it may directly or indirectly induce severe threats to human health. Sensitive and selective screening is an efficient strategy to prevent or reduce human and animal exposure to mycotoxins. However, enormous challenges exist in the determination of mycotoxins, arising from complex sample matrices, trace-level analytes, and the co-occurrence of diverse mycotoxins. Appropriate sample preparation is essential to isolate, purify, and enrich mycotoxins from complicated matrices, thus decreasing sample matrix effects and lowering detection limits. With the cross-disciplinary development, new solid-phase extraction strategies have been exploited and integrated with nanotechnology to meet the challenges of mycotoxin analysis. This review summarizes the advance and progress of solid-phase extraction techniques as the methodological solutions for mycotoxin analysis. Emphases are paid on nanomaterials fabricated as trapping media of solid-phase extraction techniques, including carbonaceous nanoparticles, metal/metal oxide-based nanoparticles, and nanoporous materials. Advantages and limitations are discussed, along with the potential prospects.  相似文献   

4.
Extensive use of organophosphorus pesticides in agriculture leads to adverse effects to the environment and human health. Sample preparation is compulsory to enrich target analytes prior to detection as they often exist at trace levels and this step is critical as it determines the concentration of pollutants present in samples. The selection of a suitable extraction method is of great importance. The analytical performance of the extraction methods is influenced by the selection of sorbents as sorbents play a vital role in the sensitivity and selectivity of an analytical method. To date, numerous sorbent materials have been developed to cater to the needs of selective and sensitive pesticides’ detection. Comprehensive details pertaining to extraction methods, developed sorbents, and analytical performance are provided. This review intended to provide a general overview on different extraction techniques and sorbents that have been developed in the last 10 years for organophosphorus pesticides’ determinations in food and water samples.  相似文献   

5.
《Analytical letters》2012,45(14):2575-2583
Abstract

A simple heat driven pump for in-the-field supercritical fluid extraction was constructed and evaluated. The pump pressurized CO2 from a standard (54 atm) siphon tube supply cylinder to over 400 atm. Pressurization was achieved and maintained by cyclic heating of a pump chamber containing CO2 to 250°C then cooling and refilling the pump chamber with CO2. The pressurized CO2 was transferred to a heated reservoir from which the CO2 flowed into the extraction cell. Pulse free pressure was maintained in the extraction cell indefinitely at 135 atm with a back pressure regulator. The pressure variation of the solvent delivered to the extraction cell during this period was negligible. The total weight of the system was 5.5 Kg.  相似文献   

6.
微波萃取技术   总被引:23,自引:0,他引:23  
卜玉兰  郭振库 《色谱》1997,15(6):499-501
介绍了在气相/液相色谱测定前的一种新的样品制备技术——微波萃取技术及其所使用的试剂、设备和条件。通过一些数据以及与Soxhlet法、超声萃取法比较说明,微波萃取是一种快速、试剂用量少、回收率高、灵敏以及易于自动控制的方法。  相似文献   

7.
A typical analytical separation procedure has several important steps: sample preparation, isolation, identification, quantitation, statistical evaluation and final decision. Each step is alwayscritical to obtain correct results to fulfill the analytical purpose. In these various steps sample  相似文献   

8.
搅拌棒吸附萃取研究进展   总被引:6,自引:0,他引:6  
搅拌棒吸附萃取是九十年代末发展起来的一种新型的样品前处理技术,具有灵敏度高、重现性好、不使用有机溶剂等优点。适用于食品、环境、生物样品中挥发性及半挥发性有机物的痕量分析。本文综述了搅拌棒吸附萃取的萃取原理、萃取涂层、解吸方式、发展状况及应用,并与其它样品前处理技术进行了比较。引用文献38篇。  相似文献   

9.
液膜萃取技术在环境样品前处理中的应用   总被引:1,自引:4,他引:1  
膜分离技术是利用膜对混合物中各组分的选择渗透性能的差异来实现分离、提纯和浓缩的新型分离技术。近年来,随着人们环保意识的加强,环境中污染物的监测逐渐被重视。因环境样品基体的复杂性,在分析测定前必须进行净化处理。将膜分离技术与液液萃取技术相结合的液膜萃取技术因其  相似文献   

10.
微波辅助萃取/样品前处理联用技术的研究进展   总被引:1,自引:0,他引:1  
微波辅助萃取是近年来新发展的一种样品前处理技术,随着微波辅助萃取的发展和成熟,它与其它样品前处理技术的联用得到了迅速发展。与传统前处理方法相比,这些联用方法具有快速、高效、操作简便、节省溶剂、选择性好、应用范围广的特点。该文综述了微波辅助萃取及其与其它样品前处理技术联用的特点及适用性,并对近年来微波辅助萃取与其它前处理方法联用的发展概况及在分析领域中的应用情况进行了详细总结。  相似文献   

11.
土壤中多环麝香微波辅助提取与其它提取方法的对比研究   总被引:1,自引:0,他引:1  
结合硅胶柱净化、GC - MS技术比较了微波辅助提取、索氏提取和超声波提取对土壤中佳乐麝香和吐纳麝香的萃取效果.通过对微波辅助提取条件进行优化,确定采用30 mL正己烷-丙酮(1∶1)于120℃微波萃取20 min.在优化条件下,土壤样品中佳乐麝香和吐纳麝香的线性范围为10~1 000 μg/L,相关系数分别为0.99...  相似文献   

12.
Fabric phase sorptive extraction (FPSE) is an evolutionary sample preparation approach which was introduced in 2014, meeting all green analytical chemistry (GAC) requirements by implementing a natural or synthetic permeable and flexible fabric substrate to host a chemically coated sol–gel organic–inorganic hybrid sorbent in the form of an ultra-thin coating. This construction results in a versatile, fast, and sensitive micro-extraction device. The user-friendly FPSE membrane allows direct extraction of analytes with no sample modification, thus eliminating/minimizing the sample pre-treatment steps, which are not only time consuming, but are also considered the primary source of major analyte loss. Sol–gel sorbent-coated FPSE membranes possess high chemical, solvent, and thermal stability due to the strong covalent bonding between the fabric substrate and the sol–gel sorbent coating. Subsequent to the extraction on FPSE membrane, a wide range of organic solvents can be used in a small volume to exhaustively back-extract the analytes after FPSE process, leading to a high preconcentration factor. In most cases, no solvent evaporation and sample reconstitution are necessary. In addition to the extensive simplification of the sample preparation workflow, FPSE has also innovatively combined the extraction principle of two major, yet competing sample preparation techniques: solid phase extraction (SPE) with its characteristic exhaustive extraction, and solid phase microextraction (SPME) with its characteristic equilibrium driven extraction mechanism. Furthermore, FPSE has offered the most comprehensive cache of sorbent chemistry by successfully combining almost all of the sorbents traditionally used exclusively in either SPE or in SPME. FPSE is the first sample preparation technique to exploit the substrate surface chemistry that complements the overall selectivity and the extraction efficiency of the device. As such, FPSE indeed represents a paradigm shift approach in analytical/bioanalytical sample preparation. Furthermore, an FPSE membrane can be used as an SPME fiber or as an SPE disk for sample preparation, owing to its special geometric advantage. So far, FPSE has overwhelmingly attracted the interest of the separation scientist community, and many analytical scientists have been developing new methodologies by implementing this cutting-edge technique for the extraction and determination of many analytes at their trace and ultra-trace level concentrations in environmental samples as well as in food, pharmaceutical, and biological samples. FPSE offers a total sample preparation solution by providing neutral, cation exchanger, anion exchanger, mixed mode cation exchanger, mixed mode anion exchanger, zwitterionic, and mixed mode zwitterionic sorbents to deal with any analyte regardless of its polarity, ionic state, or the sample matrix where it resides. Herein we present the theoretical background, synthesis, mechanisms of extraction and desorption, the types of sorbents, and the main applications of FPSE so far according to different sample categories, and to briefly show the progress, advantages, and the main principles of the proposed technique.  相似文献   

13.
As the main source of nutrients for the important pollinator honeybee, bee pollen is crucial for the health of the honeybee and the agro-ecosystem. In the present study, a new sample preparation procedure has been developed for the determination of neonicotinoid pesticides in bee pollen. The neonicotinoid pesticides were extracted using miniaturized salting-out assisted liquid-liquid extraction (mini-SALLE), followed by disposable pipette extraction (DPX) for the clean-up of analytes. Effects of DPX parameters on the clean-up performance were systematically investigated, including sorbent types (PSA, C18, and silica gel), mass of sorbent, loading modes, and elution conditions. In addition, the clean-up effect of classical dispersive solid-phase extraction (d-SPE) was compared with that of the DPX method. Results indicated that PSA-based DPX showed excellent clean-up ability for the high performance liquid chromatography (HPLC) analysis of neonicotinoid pesticides in bee pollen. The proposed DPX method was fully validated and demonstrated to provide the advantage of simple and rapid clean-up with low consumption of solvent. This is the first report of DPX method applied in bee pollen matrix, and would be valuable for the development of a fast sample preparation method for this challenging and important matrix.  相似文献   

14.
吸附剂是固相萃取技术的核心。近年来混合模式固相萃取吸附剂以其独特的选择性成为一个研究热点,被广泛应用于环境监测、食品分析、药物分析等领域。本文主要阐述了混合模式固相萃取吸附剂的优势、制备及其应用,并展望了其发展方向及应用前景。  相似文献   

15.
In the present work, a novel sample preparation method, micro salting-out assisted matrix solid-phase dispersion (μ-SOA-MSPD), was developed for the determination of bisphenol A (BPA) and bisphenol B (BPB) contaminants in bee pollen. The proposed method was designed to combine two classical sample preparation methodologies, matrix solid-phase dispersion (MSPD) and homogenous liquid-liquid extraction (HLLE), to simplify and speed-up the preparation process. Parameters of μ-SOA-MSPD were systematically investigated, and results indicated the significant effect of salt and ACN-H2O extractant on the signal response of analytes. In addition, excellent clean-up ability in removing matrix components was observed when primary secondary amine (PSA) sorbent was introduced into the blending operation. The developed method was fully validated, and the limits of detection for BPA and BPB were 20 μg/kg and 30 μg/kg, respectively. Average recoveries and precisions were ranged from 83.03% to 94.64% and 1.76% to 5.45%, respectively. This is the first report on the analysis of bisphenol contaminants in bee pollen sample, and also on the combination of MSPD and HLLE. The present method might provide a new strategy for simple and fast sample preparation of solid and semi-solid samples.  相似文献   

16.
A new method for quantification of 12 nitroaromatic compounds including 2,4,6‐trinitrotoluene, its metabolites and 2,4,6‐trinitrophenyl‐N‐methylnitramine with microextraction by packed sorbent followed by gas chromatography and mass spectrometric detection in environmental and biological samples is developed. The microextraction device employs 4 mg of C18 silica sorbent inserted into a microvolume syringe for sample preparation. Several parameters capable of influencing the microextraction procedure, namely, number of extraction cycles, washing solvent, volume of washing solvent, elution solvent, volume of eluting solvent and pH of matrix, were optimized. The developed method produced satisfactory results with excellent values of coefficient of determination (R2 > 0.9804) within the established calibration range. The extraction yields were satisfactory for all analytes (> 89.32%) for aqueous samples and (> 87.45%) for fluidic biological samples. The limits of detection values lie in the range 14–828 pg/mL.  相似文献   

17.
RNAs are a promising class of therapeutics given their ability to regulate protein concentrations at the cellular level. Developing safe and effective strategies to deliver RNAs remains important for realizing their full clinical potential. Here, we develop lipid nanoparticle formulations that can deliver short interfering RNAs (for gene silencing) or messenger RNAs (for gene upregulation). Specifically, we study how the tail length, tail geometry, and linker spacing in diketopiperazine lipid materials influences LNP potency with siRNAs and mRNAs. Eight lipid materials are synthesized, and 16 total formulations are screened for activity in vitro; the lead material is evaluated with mRNA for in vivo use and demonstrates luciferase protein expression in the spleen. In undertaking this approach, not only do we develop synthetic routes to delivery materials, but we also reveal structural criteria that could be useful for developing next‐generation delivery materials for RNA therapeutics.  相似文献   

18.
《Analytical letters》2012,45(7):1261-1288
Abstract

The acceptance of microwave digestion technique is based on procedures successfully carried out for mist different kinds of samples. The goals of this paper are to gather all information concerning applications of microwave digestion methods to analytical chemistry. Some applications of microwave techniques to sample digestion, solvent extraction, sample drying, the measurements of moisture, analyte desorption and adsorption, sample clean up, chromomeric reaction, speciation, and nebulization of analytical samples are presented.  相似文献   

19.
Protein sample preparation is the most critical step in protein analysis of complex samples and is constituted by tedious, time-consuming, and difficult-to-automate steps that usually involve the use of high volumes of solvents. In recent years, novel extraction or digestion nanomaterials (NMs) have been developed aiming to overcome these drawbacks. In this review, we have grouped the recent works related to the development of new NMs and their applications to the extraction, enrichment/purification, and digestion of proteins. This paper evaluates the role of different kinds of NMs in each step of protein sample preparation focusing on the type of established interaction between the protein and the nanomaterial, their sensitivity and selectivity, their adsorption capacity, and the advantages that they bring in relation to time, efficiency, or reusability.  相似文献   

20.
Plant growth regulators are a class of physiologically active substances that could modify or regulate basic physiological processes in the plant and defense against abiotic and biotic stresses, including natural plant growth regulators and synthetic ones. Different from natural plant growth regulators with low content and high cost of extraction in plants, synthetic ones can be produced in large-scale production and widely used in agriculture for increasing and securing yield and quality of the harvested produce. However, like pesticides, the abuse of plant growth regulators will have negative impacts on human beings. Therefore, it is important to monitor plant growth regulators residues. Due to the low concentration of plant growth regulators and complex matrices of food, it is necessary to isolate and extract plant growth regulators by appropriate adsorbents in sample preparation for obtaining satisfactory results. In the last decade, several advanced materials as adsorbents have shown superiority in sample preparation. This review briefly introduces the recent application and progress of advanced materials as adsorbents in sample preparation for extraction of plant growth regulators from the complex matrix. In the end, the challenge and outlook about the extraction of plant growth regulators of these advanced adsorbents in sample preparation are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号