首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical reduction of CO2 to fuels or commodity chemicals is a reaction of high interest for closing the anthropogenic carbon cycle. The role of the electrolyte is of particular interest, as the interplay between the electrocatalytic surface and the electrolyte plays an important role in determining the outcome of the CO2 reduction reaction. Therefore, insights on electrolyte effects on the electrochemical reduction of CO2 are pivotal in designing electrochemical devices that are able to efficiently and selectively convert CO2 into valuable products. Here, we provide an overview of recently obtained insights on electrolyte effects and we discuss how these insights can be used as design parameters for the construction of new electrocatalytic systems.  相似文献   

2.
The chemical use of CO2 as an inexpensive, nontoxic C1 synthon is of utmost topical interest in the context of carbon capture and utilization (CCU). We present the merger of cobalt catalysis and electrochemical synthesis for mild catalytic carboxylations of allylic chlorides with CO2. Styrylacetic acid derivatives were obtained with moderate to good yields and good functional group tolerance. The thus‐obtained products are useful as versatile synthons of γ‐arylbutyrolactones. Cyclic voltammetry and in operando kinetic analysis were performed to provide mechanistic insights into the electrocatalytic carboxylation with CO2.  相似文献   

3.
The electrochemical CO2 reduction reaction (CO2RR) either to generate multicarbon (C2+) or single carbon (C1) value-added products provides an effective and promising approach to mitigate the high CO2 concentration in the atmosphere and promote energy storage. However, cost-effectiveness of catalytic materials limits practical application of this technology in the short term. Herein, we summarize and discuss recent and advanced works on cost-effective oxide-derived copper catalysts for the generation of C2+ products (hydrocarbons and alcohols) and transition metal–nitrogen–doped carbon electrocatalytic materials for C1 compounds production from CO2RR. We think they represent suitable electrocatalyst candidates for scaling up electrochemical CO2 conversion. This short review may provide inspiration for the future design and development of innovative active, cost-effective, selective and stable electrocatalysts with improved properties for either the production of C2+ (alcohols, hydrocarbons) or carbon monoxide from CO2RR.  相似文献   

4.
The photocatalytic conversion of carbon dioxide into sustainable fuel methanol using carbon quantum dots is highlighted in this paper. The multifaceted roles of carbon quantum dots in photocatalytic reactions and future directions of CQD materials are outlined.  相似文献   

5.
魏娜  周思彤  赵震 《化学通报》2023,86(2):159-165
金属有机骨架(Metal-organic frameworks, MOFs)材料因具有超大比表面积、可修饰的化学结构、可调的孔隙形状和大小、开放的金属位点等独特的结构优越性而被广泛用于催化CO2环加成反应的研究中。然而,大部分MOFs材料在此反应中往往需要在助催化剂或溶剂的存在下才能发挥其催化性能,这也导致了产物分离困难、资源浪费等问题。因此,开发能够单独催化CO2环加成反应的MOFs材料成为当前科学家们研究的热点。在MOFs骨架上或孔腔内修饰离子液体是构筑此类催化体系的一种重要途径。本文对近年来这类MOFs的构筑策略、催化CO2环加成反应的性能以及催化机理进行了总结,同时还对MOFs组成、形貌以及催化反应条件等因素对催化活性的影响进行了探讨。  相似文献   

6.
《中国化学》2018,36(7):644-659
In the last few years, photochemical and electrochemical CO2 transformations have attracted increasing attention in response to topical interest in renewable energy and green chemistry. The present minireview offers an overview about the current approaches for the photochemical and electrochemical carbon dioxide fixation with organic compounds. Valuable products, including carboxylic acids and heterocyclic compounds, are accessible through carboxylation and carboxylative cyclization, respectively. In photochemical and electrochemical processes, photo‐ or electro‐induced radical ions or other high‐energy organic compounds are considered as key intermediates to react with CO2. Besides, activation of CO2 to produce radical anion has also been reported.  相似文献   

7.
We proposed an electrochemical DNA sensor by using peroxidase-like magnetic ZnFe2O4–graphene quantum dots (ZnFe2O4/GQDs) nanohybrid as a mimic enzymatic label. Aminated graphene and Pd nanowires were successively modified on glassy carbon electrode, which improved the electronic transfer rate as well as increased the amount of immobilized capture ssDNA (S1). The nanohybrid ZnFe2O4/GQDs was prepared by assembling the GQDs on the surface of ZnFe2O4 through a photo-Fenton reaction, which was not only used as a mimic enzyme but also as a carrier to label complementary ssDNA (S3). By synergistically integrating highly catalytically activity of nano-sized GQDs and ZnFe2O4, the nanohybrid possessed highly-efficient peroxidase-like catalytic activity which could produce a large current toward the reduction of H2O2 for signal amplification. Thionine was used as an excellent electron mediator. Compared with traditional enzyme labels, the mimic enzyme ZnFe2O4/GQDs exhibited many advantages such as environment friendly and better stability. Under the optimal conditions, the approach provided a wide linear range from 10−16 to 5 × 10−9 M and low detection limit of 6.2 × 10−17 M. The remarkable high catalytic capability could allow the nanohybrid to replace conventional peroxidase-based assay systems. The new, robust and convenient assay systems can be widely utilized for the identification of other target molecules.  相似文献   

8.
The electrochemical CO2 reduction reaction (CO2RR) is viewed as a promising way to remove the greenhouse gas CO2 from the atmosphere and convert it into useful industrial products such as methane, methanol, formate, ethanol, and so forth. Single-atom site catalysts (SACs) featuring maximum theoretical atom utilization and a unique electronic structure and coordination environment have emerged as promising candidates for use in the CO2RR. The electronic properties and atomic structures of the central metal sites in SACs will be changed significantly once the types or coordination environments of the central metal sites are altered, which appears to provide new routes for engineering SACs for CO2 electrocatalysis. Therefore, it is of great importance to discuss the structural regulation of SACs at the atomic level and their influence on CO2RR activity and selectivity. Despite substantial efforts being made to fabricate various SACs, the principles of regulating the intrinsic electrocatalytic performances of the single-atom sites still needs to be sufficiently emphasized. In this perspective article, we present the latest progress relating to the synthesis and catalytic performance of SACs for the electrochemical CO2RR. We summarize the atomic-level regulation of SACs for the electrochemical CO2RR from five aspects: the regulation of the central metal atoms, the coordination environments, the interface of single metal complex sites, multi-atom active sites, and other ingenious strategies to improve the performance of SACs. We highlight synthesis strategies and structural design approaches for SACs with unique geometric structures and discuss how the structure affects the catalytic properties.

Electrochemical CO2 reduction reaction (CO2RR) is a promising way to remove CO2 and convert it into useful industrial products. Single-atom site catalysts provide opportunities to regulate the active sites of CO2RR catalysts at the atomic level.  相似文献   

9.
Large numbers of catalysts have been developed for the electrochemical reduction of CO2 to value‐added liquid fuels. However, it remains a challenge to maintain a high current efficiency in a wide negative potential range for achieving a high production rate of the target products. Herein, we report a 2D/0D composite catalyst composed of bismuth oxide nanosheets and nitrogen‐doped graphene quantum dots (Bi2O3‐NGQDs) for highly efficient electrochemical reduction of CO2 to formate. Bi2O3‐NGQDs demonstrates a nearly 100 % formate Faraday efficiency (FE) at a moderate overpotential of 0.7 V with a good stability. Strikingly, Bi2O3‐NGQDs exhibit a high activity (average formate FE of 95.6 %) from ?0.9 V to ?1.2 V vs. RHE. Additionally, DFT calculations reveal that the origin of enhanced activity in this wide negative potential range can be attributed to the increased adsorption energy of CO2(ads) and OCHO* intermediate after combination with NGQDs.  相似文献   

10.
The electrochemical reduction of carbon dioxide (CO2ER) is amongst one the most promising technologies to reduce greenhouse gas emissions since carbon dioxide (CO2) can be converted to value-added products. Moreover, the possibility of using a renewable source of energy makes this process environmentally compelling. CO2ER in ionic liquids (ILs) has recently attracted attention due to its unique properties in reducing overpotential and raising faradaic efficiency. The current literature on CO2ER mainly reports on the effect of structures, physical and chemical interactions, acidity, and the electrode–electrolyte interface region on the reaction mechanism. However, in this work, new insights are presented for the CO2ER reaction mechanism that are based on the molecular interactions of the ILs and their physicochemical properties. This new insight will open possibilities for the utilization of new types of ionic liquids. Additionally, the roles of anions, cations, and the electrodes in the CO2ER reactions are also reviewed.  相似文献   

11.
In the context of an increased interest in the abatement of CO2 emissions generated by industrial activities, CO2 hydrogenation processes show an important potential to be used for the production of valuable compounds (methane, methanol, formic acid, light olefins, aromatics, syngas and/or synthetic fuels), with important benefits for the decarbonization of the energy sector. However, in order to increase the efficiency of the CO2 hydrogenation processes, the selection of active and selective catalysts is of utmost importance. In this context, the interest in graphene-based materials as catalysts for CO2 hydrogenation has significantly increased in the last years. The aim of the present paper is to review and discuss the results published until now on graphene-based materials (graphene oxide, reduced graphene oxide, or N-dopped graphenes) used as metal-free catalysts or as catalytic support for the thermocatalytic hydrogenation of CO2. The reactions discussed in this paper are CO2 methanation, CO2 hydrogenation to methanol, CO2 transformation into formic acid, CO2 hydrogenation to high hydrocarbons, and syngas production from CO2. The discussions will focus on the effect of the support on the catalytic process, the involvement of the graphene-based support in the reaction mechanism, or the explanation of the graphene intervention in the hydrogenation process. Most of the papers emphasized the graphene’s role in dispersing and stabilizing the metal and/or oxide nanoparticles or in preventing the metal oxidation, but further investigations are needed to elucidate the actual role of graphenes and to propose reaction mechanisms.  相似文献   

12.
The electrochemical carbon dioxide reduction reaction (CO2RR) to C2 chemicals has received great attention. Here, we report the cuprous oxide (Cu2O) nanocubes cooperated with silver (Ag) nanoparticles via the replacement reaction for a synergetic CO2RR. The Cu2O-Ag tandem catalyst exhibits an impressive Faradaic efficiency (FE) of 72.85% for C2 products with a partial current density of 243.32 mA·cm−2. The electrochemical experiments and density functional theory (DFT) calculations reveal that the introduction of Ag improves the intermediate CO concentration on the catalyst surface and meanwhile reduces the C-C coupling reaction barrier energy, which is favorable for the synthesis of C2 products.  相似文献   

13.
Conversion of low‐value, but thermodynamically stable chemical byproducts such as alkanes or CO2 to more valuable feedstocks is of broad‐based interest. These so‐called up‐conversion processes are expensive because they require energy‐intensive and catalytic interventions to drive reactions against thermodynamic gradients. Here we show that the nucleophilic characteristics of superoxides, generated galvanostatically in an Aluminum/O2 electrochemical cell, can be used in tandem with the intrinsic catalytic properties of an imidazolium/AlCl3 electrolyte to facilely upgrade alkanes (n‐decane), alkenes (1‐decene), and CO2 feedstocks. The aluminum/O2 electrochemical cell used to generate the superoxide intermediate is also reported to deliver large amounts of electrical energy and therefore offers a system for high‐energy density storage and for chemical up‐conversion of low‐value compounds. Chronopotentiometry, mass spectrometry and nuclear magnetic resonance were used to investigate the electrochemical features of the system and to analyze the discharge products. We find that even at room temperature, alkanes and alkenes are facilely oligomerized and isomerized at high conversions (>97 %), mimicking the traditionally produced refined products. Incorporating CO2 in the alkane feed leads to formation of esters and formates at moderate yields (21 %).  相似文献   

14.
This brief review presents the recent development in the synthesis of cyclic carbonate from carbon dioxide (CO2) using ionic liquids as catalyst and/or reaction medium. The synthesis of cyclic carbonate includes three aspects: catalytic reaction of CO2 and epoxide, electrochemical reaction of CO2 and epoxide, and oxidative carboxylation of olefin. Some ionic liquids are suitable catalysts and/or solvents to the CO2 fixation to produce cyclic carbonate. The activity of ionic liquid is greatly enhanced by the addition of Lewis acidic compounds of metal halides or metal complexes that have no or low activity by themselves. Using ionic liquids for the electrochemical synthesis of the cyclic carbonate can avoid harmful organic solvents, supporting electrolytes and catalysts, which are necessary for conventional electrochemical reaction systems. Although the ionic liquid is better for the oxidative carboxylation of olefin than the ordinary catalysts reported previously, this reaction system is at a preliminary stage. Using the ionic liquids, the synthesis process will become greener and simpler because of easy product separation and catalyst recycling and unnecessary use of volatile and harmful organic solvents.  相似文献   

15.
Conversion of low‐value, but thermodynamically stable chemical byproducts such as alkanes or CO2 to more valuable feedstocks is of broad‐based interest. These so‐called up‐conversion processes are expensive because they require energy‐intensive and catalytic interventions to drive reactions against thermodynamic gradients. Here we show that the nucleophilic characteristics of superoxides, generated galvanostatically in an Aluminum/O2 electrochemical cell, can be used in tandem with the intrinsic catalytic properties of an imidazolium/AlCl3 electrolyte to facilely upgrade alkanes (n‐decane), alkenes (1‐decene), and CO2 feedstocks. The aluminum/O2 electrochemical cell used to generate the superoxide intermediate is also reported to deliver large amounts of electrical energy and therefore offers a system for high‐energy density storage and for chemical up‐conversion of low‐value compounds. Chronopotentiometry, mass spectrometry and nuclear magnetic resonance were used to investigate the electrochemical features of the system and to analyze the discharge products. We find that even at room temperature, alkanes and alkenes are facilely oligomerized and isomerized at high conversions (>97 %), mimicking the traditionally produced refined products. Incorporating CO2 in the alkane feed leads to formation of esters and formates at moderate yields (21 %).  相似文献   

16.
Converting carbon dioxide (CO2) into high-value fuels or chemicals is considered as a promising way to utilize CO2 and alleviate the excessive greenhouse gas emission. Among multiple catalysis approaches, electrochemical reduction of CO2 to ethanol has an important prospect due to the high energy density and widely applications of ethanol. In recent years, many electrocatalysts for CO2 reduce reaction (CO2RR) have shown promising catalytic activity for ethanol production. In this review, we will introduce the recent progress in this field. The basic principles and electrochemical performances of CO2RR are reviewed at first. Then, several categories of active electrocatalysts for CO2RR to ethanol are summarized, including the discussion of reaction mechanism and catalytic sites. Finally, several possible strategies are proposed, providing guidance for future design and preparation of high-performance catalysts.  相似文献   

17.
Here we report a facile approach to synthesize a novel nanostructured thin film comprising Cu nanoparticles (NPs) and reduced graphene oxide (rGO) on a glassy carbon electrode (GCE) via the direct electrochemical reduction of a mixture of cupper and graphene oxide (GO) precursors. The effect of the applied potential on the electrochemical reduction of CO2 was investigated using linear sweep voltammetric (LSV) and chronoamperometric (CA) techniques. Carbon monoxide and formate were found as the main products based on our GC and HPLC analysis. The electrochemical reduction of CO2 at the Cu/rGO thin film was further studied using in situ ATR-FTIR spectroscopy to identify the liquid product formed at different applied cathodic potentials. Our experimental measurements have shown that the nanostructured Cu/rGO thin film exhibits an excellent stability and superb catalytic activity for the electrochemical reduction of CO2 in an aqueous solution with a high current efficiency of 69.4% at − 0.6 V vs. RHE, promising for the efficient electrochemical conversion of CO2 to valuable products.  相似文献   

18.
《中国化学快报》2023,34(6):107757
The electrochemical CO2 reduction reaction (CO2ER) is an emerging process that involves utilizing CO2 to produce valuable chemicals and fuels by consuming excess electricity from renewable sources. Recently, Cu and Cu-based nanoparticles, as earth-abundant and economical metal sources, have been attracting significant interest. The chemical and physical properties of Cu-based nanoparticles are modified by different strategies, and CO2 can be converted into multicarbon products. Among various Cu-based nanoparticles, Cu-based metal-organic frameworks (MOFs) are gaining increasing interest in the field of catalysis because of their textural, topological, and electrocatalytic properties. In this minireview, we summarized and highlighted the main achievements in the research on Cu-based MOFs and their advantages in the CO2ER as electrocatalysts, supports, or precursors.  相似文献   

19.
Investigations of the dependence on the potential of the anodic oxidation of carbon electrodes using differential electrochemical mass spectroscopy (DEMS) show that pure carbon is oxidized only at potentials higher than 0.9 V (RHE) (with CO2 and, to a lesser extent, CO being the main products), and that Pt activation catalyzes the oxidation of a COsurf surface layer to CO2 at potentials between 0.6 and 0.8 mV (RHE), with the COsurf being formed on the carbon at E>0.3 V (RHE).It is assumed that the Pt-induced carbon corrosion occurs in the neighbourhood of the Pt-sites, thus damaging the Pt to carbon contact. Surface segregation of Pt-clusters and a loss of catalytic activity is the result.  相似文献   

20.
The catalytic, electrocatalytic, or photocatalytic conversion of CO2 into useful chemicals in high yield for industrial applications has so far proven difficult. Herein, we present our work on the electrochemical reduction of CO2 in seawater using a boron‐doped diamond (BDD) electrode under ambient conditions to produce formaldehyde. This method overcomes the usual limitation of the low yield of higher‐order products, and also reduces the generation of H2. In comparison with other electrode materials, BDD electrodes have a wide potential window and high electrochemical stability, and, moreover, exhibit very high Faradaic efficiency (74 %) for the production of formaldehyde, using either methanol, aqueous NaCl, or seawater as the electrolyte. The high Faradaic efficiency is attributed to the sp3‐bonded carbon of the BDD. Our results have wide ranging implications for the efficient and cost‐effective conversion of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号