首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Background: Glucagon-like peptide 1 receptor (GLP-1R) is preferentially expressed in pancreatic islets, especially in β-cells, and highly expressed in human insulinomas and gastrinomas. In recent years several GLP-1R–avid radioligands have been developed to image insulin-secreting tumors or to provide a tentative quantitative in vivo biomarker of pancreatic β-cell mass. Exendin-4, a 39-amino acid peptide with high binding affinity to GLP-1R, has been labeled with Ga-68 for imaging with positron emission tomography (PET). Preparation conditions may influence the quality and in vivo behavior of tracers. Starting from a published synthesis and quality controls (QCs) procedure, we have developed and validated a new rapid and simple UV-Radio-HPLC method to test the chemical and radiochemical purity of [68Ga]Ga-NODAGA-exendin-4, to be used in the clinical routine. Methods: Ga-68 was obtained from a 68Ge/68Ga Generator (GalliaPharma®) and purified using a cationic-exchange cartridge on an automated synthesis module (Scintomics GRP®). NODAGA-exendin-4 contained in the reactor (10 µg) was reconstituted with HEPES and ascorbic acid. The reaction mixture was incubated at 100 °C. The product was purified through HLB cartridge, diluted, and sterilized. To validate the proposed UV-Radio-HPLC method, a stepwise approach was used, as defined in the guidance document released by the International Conference on Harmonization of Technical Requirements of Pharmaceuticals for Human Use (ICH), adopted by the European Medicines Agency (CMP/ICH/381/95 2014). The assessed parameters are specificity, linearity, precision (repeatability), accuracy, and limit of quantification. Therefore, a range of concentrations of Ga-NODAGA-exendin-4, NODAGA-exendin-4 (5, 4, 3.125, 1.25, 1, and 0.75 μg/mL) and [68Ga]Ga-NODAGA-exendin-4 were analyzed. To validate the entire production process, three consecutive batches of [68Ga]Ga-NODAGA-exendin-4 were tested. Results: Excellent linearity was found between 5–0.75 μg/mL for both the analytes (NODAGA-exendin-4 and 68Ga-NODAGA-exendin-4), with a correlation coefficient (R2) for calibration curves equal to 0.999, average coefficients of variation (CV%) < 2% (0.45% and 0.39%) and average per cent deviation value of bias from 100%, of 0.06% and 0.04%, respectively. The calibration curve for the determination of [68Ga]Ga-NODAGA-exendin-4 was linear with a R2 of 0.993 and CV% < 2% (1.97%), in accordance to acceptance criteria. The intra-day and inter-day precision of our method was statistically confirmed using 10 μg of peptide. The mean radiochemical yield was 45 ± 2.4% in all the three validation batches of [68Ga]Ga-NODAGA-exendin-4. The radiochemical purity of [68Ga]Ga-NODAGA-exendin-4 was >95% (97.05%, 95.75% and 96.15%) in all the three batches. Conclusions: The developed UV-Radio-HPLC method to assess the radiochemical and chemical purity of [68Ga]Ga-NODAGA-exendin-4 is rapid, accurate and reproducible like its fully automated production. It allows the routine use of this PET tracer as a diagnostic tool for PET imaging of GLP-1R expression in vivo, ensuring patient safety.  相似文献   

2.
68Ga-radionuclide has gained importance due to its availability via 68Ge/68Ga generator or cyclotron production, therefore increasing the number of 68Ga-based PET radiopharmaceuticals available in clinical practice. [68Ga]Ga-citrate PET has been shown to be prominent for detection of inflammation/infection of the musculoskeletal, gastrointestinal, respiratory, and cardiovascular systems. Automation and comparison between conventional and microfluidic production of [68Ga]Ga-citrate was performed using miniAllInOne® (Trasis) and iMiDEV™ (PMB-Alcen) synthetic modules. Fully automated procedures were elaborated for cGMP production of tracer. In order to facilitate the tracer approval as a radiopharmaceutical for clinical use, a new method for radiochemical identity determination by HPLC analysis to complement standard TLC radiochemical purity measurement was developed. The results showed higher radiochemical yields when using MCX cartridge on the conventional module mAIO®, while a PS-H+ cation exchanger was shown to be preferred for integration into the microfluidic cassette of iMiDEV™ module. In this study, the fully automated radiosynthesis of [68Ga]Ga-citrate using different synthesizers demonstrated reliable and reproducible radiochemical yields. In order to demonstrate the applicability of [68Ga]Ga-citrate, in vitro and in vivo studies were performed showing similar characteristics of the tracer obtained using macro- and microfluidic ways of production.  相似文献   

3.
Due to their very poor prognosis and a fatal outcome, secondary brain tumors are one of the biggest challenges in oncology today. From the point of view of the early diagnosis of these brain micro- and macro-tumors, the sensitivity and specificity of the diagnostic tools constitute an obstacle. Molecular imaging, such as Positron Emission Tomography (PET), is a promising technique but remains limited in the search for cerebral localizations, given the commercially available radiotracers. Indeed, the [18F]FDG PET remains constrained by the physiological fixation of the cerebral cortex, which hinders the visualization of cerebral metastases. Tumor angiogenesis is recognized as a crucial phenomenon in the progression of malignant tumors and is correlated with overexpression of the neuropilin-1 (NRP-1) receptor. Here, we describe the synthesis and the photophysical properties of the new gallium-68 radiolabeled peptide to target NRP-1. The KDKPPR peptide was coupled with gallium-68 anchored into a bifunctional NODAGA chelating agent, as well as Cy5 for fluorescence detection. The Cy5 absorbance spectra did not change, whereas the molar extinction coefficient (ε) decreased drastically. An enhancement of the fluorescence quantum yield (φF) could be observed due to the better water solubility of Cy5. [68Ga]Ga-NODAGA-K(Cy5)DKPPR was radiosynthesized efficiently, presented hydrophilic properties (log D = −1.86), and had high in vitro stability (>120 min). The molecular affinity and the cytotoxicity of this new chelated radiotracer were evaluated in vitro on endothelial cells (HUVEC) and MDA-MB-231 cancer cells (hormone-independent and triple-negative line) and in vivo on a brain model of metastasis in a nude rat using the MDA-MB-231 cell line. No in vitro toxicity has been observed. The in vivo preliminary experiments showed promising results, with a high contrast between the healthy brain and metastatic foci for [68Ga]Ga-NODAGA-K(Cy5)DKPPR.  相似文献   

4.
Fibroblast activation protein (FAP) is expressed in the microenvironment of most human epithelial tumors. 68Ga-labeled FAP inhibitors based on the cyanopyrrolidine structure (FAPI) are currently used for the detection of the tumor microenvironment by PET imaging. This research aimed to design, synthesize and preclinically evaluate a new FAP inhibitor radiopharmaceutical based on the 99mTc-((R)-1-((6-hydrazinylnicotinoyl)-D-alanyl) pyrrolidin-2-yl) boronic acid (99mTc-iFAP) structure for SPECT imaging. Molecular docking for affinity calculations was performed using the AutoDock software. The chemical synthesis was based on a series of coupling reactions of 6-hidrazinylnicotinic acid (HYNIC) and D-alanine to a boronic acid derivative. The iFAP was prepared as a lyophilized formulation based on EDDA/SnCl2 for labeling with 99mTc. The radiochemical purity (R.P.) was verified via ITLC-SG and reversed-phase radio-HPLC. The stability in human serum was evaluated by size-exclusion HPLC. In vitro cell uptake was assessed using N30 stromal endometrial cells (FAP positive) and human fibroblasts (FAP negative). Biodistribution and tumor uptake were determined in Hep-G2 tumor-bearing nude mice, from which images were acquired using a micro-SPECT/CT. The iFAP ligand (Ki = 0.536 nm, AutoDock affinity), characterized by UV-Vis, FT-IR, 1H–NMR and UPLC-mass spectroscopies, was synthesized with a chemical purity of 92%. The 99mTc-iFAP was obtained with a R.P. >98%. In vitro and in vivo studies indicated high radiotracer stability in human serum (>95% at 24 h), specific recognition for FAP, high tumor uptake (7.05 ± 1.13% ID/g at 30 min) and fast kidney elimination. The results found in this research justify additional dosimetric and clinical studies to establish the sensitivity and specificity of the 99mTc-iFAP.  相似文献   

5.
We have developed a fast and reliable procedure to routinely measure the abundances of up to about 35 elements even in small (<1 mg) samples. Depending on the type of samples, they are either irradiated for about 8 hours at a flux of about 2·1012n·cm–2·s–1, or up to 100 hours at a flux of about 6·1013n·cm–2·s–1. As standards, high-purity synthetic multielement standards and well-characterized geological reference materials are used. Synthetic standards are used as primary standards because they have several advantages over secondary (geological) standards. Three to four counts are done one each sample, starting 1–3 days after the end of the irradiation. We use high-purity germanium (HpGe) detectors with high efficiencies and very good energy resolution (1.6–1.8 keV at 1332 keV). To allow high throughput rates we use fast preamplifiers and gated integrator spectroscopy amplifiers with fast fixed conversion time ADCs. The signals are fed into an acquisition interface module (AIM) and via Ethernet into a Micro VAX. To allow better peak deconvolution, 8k spectra are taken where possible. A specially designed annular NaI(TI) guard detector allows Compton suppression spectrometry. The system uses standard software and was tested with sets of geological standards and has given reliable results for a wide variety of samples, e.g., cosmic spherules in the 30–200 g weight range.  相似文献   

6.
We report column material for a 68Ge/68Ga generator with acid resistance and excellent adsorption and desorption capacity of 68Ge and 68Ga, respectively. Despite being a core element of the 68Ge/68Ga generator system, research on this has been insufficient. Therefore, we synthesized a low molecular chitosan-based TiO2 (LC-TiO2) adsorbent via a physical trapping method as a durable 68Ge/68Ga generator column material. The adsorption/desorption studies exhibited a higher separation factor of 68Ge/68Ga in the concentration range of HCl examined (0.01 M to 1.0 M). The prepared LC-TiO2 adsorbent showed acid resistance capabilities with >93% of 68Ga elution yield and 1.6 × 10−4% of 68Ge breakthrough. In particular, the labeling efficiency of DOTA and NOTA, by using the generator eluted 68Ga, was quite encouraging and confirmed to be 99.65 and 99.69%, respectively. Accordingly, the resulting behavior of LC-TiO2 towards 68Ge/68Ga adsorption/desorption capacity and stability with aqueous HCl exhibited a high potential for ion-exchange solid-phase extraction for the 68Ge/68Ga generator column material.  相似文献   

7.
The aim of this work is to compare [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 PET/CT as imaging agents in patients with prostate cancer (PCa). Comparisons were made by evaluating times and costs of the radiolabeling process, imaging features including pharmacokinetics, and impact on patient management. The analysis of advantages and drawbacks of both radioligands might help to make a better choice based on firm data. For [68Ga]Ga-PSMA-11, the radiochemical yield (RCY) using a low starting activity (L, average activity of 596.55 ± 37.97 MBq) was of 80.98 ± 0.05%, while using a high one (H, average activity of 1436.27 ± 68.68 MBq), the RCY was 71.48 ± 0.04%. Thus, increased starting activities of [68Ga]-chloride negatively influenced the RCY. A similar scenario occurred for [18F]PSMA-1007. The rate of detection of PCa lesions by Positron Emission Tomography/Computed Tomography (PET/CT) was similar for both radioligands, while their distribution in normal organs significantly differed. Furthermore, similar patterns of biodistribution were found among [18F]PSMA-1007, [68Ga]Ga-PSMA-11, and [177Lu]Lu-PSMA-617, the most used agent for RLT. Moreover, the analysis of economical aspects for each single batch of production corrected for the number of allowed PET/CT examinations suggested major advantages of [18F]PSMA-1007 compared with [68Ga]Ga-PSMA-11. Data from this study should support the proper choice in the selection of the PSMA PET radioligand to use on the basis of the cases to study.  相似文献   

8.
Background: Nowadays, in Nuclear Medicine, clinically applied radiopharmaceuticals must meet quality release criteria such as high radiochemical purity and radiochemical yield. Many radiopharmaceuticals do not have marketing authorization and have no dedicated monograph within European Pharmacopeia (Ph. Eur.); therefore, general monographs on quality controls (QCs) have to be applied for clinical application. These criteria require standardization and validation in labeling and preparation, including quality controls measurements, according to well defined standard operation procedures. However, QC measurements are often based on detection techniques that are specific to a certain chromatographic system. Several radiosyntheses of [68Ga]Ga-radiopharmaceuticals are more efficient and robust when they are performed with 2-[4-(2-hydroxyethyl)piperazin-1-yl] ethanesulfonic acid (HEPES) buffer, which is considered as an impurity to be assessed in the QC procedure, prior to clinical use. Thus, Ph. Eur. has introduced a thin-layer chromatography (TLC) method to quantify the HEPES amount that is present in [68Ga]Ga-radiopharmaceuticals. However, this is only qualitative and has proven to be unreliable. Here we develop and validate a new high-performance liquid chromatography (UV-Radio-HPLC) method to quantify the residual amount of HEPES in 68Ga-based radiopharmaceuticals. Method: To validate the proposed UV-Radio-HPLC method, a stepwise approach was used, as defined in the guidance document that was adopted by the European Medicines Agency (CMP/ICH/381/95 2014). The assessed parameters are specificity, linearity, precision (repeatability), accuracy, and limit of quantification. A range of concentrations of HEPES (100, 80, 60, 40, 20, 10, 5, 3 μg/mL) were analyzed. Moreover, to test the validity and pertinence of our new HPLC method, we analyzed samples of [68Ga]Ga-DOTATOC; [68Ga]Ga-PSMA; [68Ga]Ga-DOTATATE; [68Ga]Ga-Pentixafor; and [68Ga]Ga-NODAGA-Exendin-4 from different batches that were prepared for clinical use. Results: In the assessed samples, HEPES could not be detected by the TLC method that was described in Ph. Eur. within 4 min incubation in an iodine-saturated chamber. Our developed HPLC method showed excellent linearity between 3 and 100 μg/mL for HEPES, with a correlation coefficient (R2) for calibration curves that was equal to 0.999, coefficients of variation (CV%) < 2%, and percent deviation value of bias from 100% to 5%, in accordance with acceptance criteria. The intra-day and inter-day precision of our method was statistically confirmed and the limit-of-quantification (LOQ) was 3 μg/mL, confirming the high sensitivity of the method. The amount of HEPES that was detected with our developed HPLC method in the tested [68Ga]Ga-radiopharmaceuticals resulted well below the Ph. Eur. limit, especially for [68Ga]Ga-NODAGA-Exendin-4. Conclusions: The TLC method that is described in Ph. Eur. to assess residual HEPES in [68Ga]-based radiopharmaceuticals may not be sufficiently sensitive and thus unsuitable for QC release. Our new HPLC method was sensitive, quantitative, reproducible, and rapid for QCs, allowing us to exactly determine the residual HEPES amount in [68Ga]Ga-radiopharmaceuticals for safe patient administration.  相似文献   

9.
High-density lipoprotein cholesterol (HDL-C) is thought to be atheroprotective yet some patients with elevated HDL-C levels develop cardiovascular disease, possibly due to the presence of dysfunctional HDL. We aimed to assess the metabolic fate of circulating HDL particles in patients with high HDL-C with and without coronary artery disease (CAD) using in vivo dual labeling of its cholesterol and protein moieties. We measured HDL apolipoprotein (apo) A-I, apoA-II, free cholesterol (FC), and cholesteryl ester (CE) kinetics using stable isotope-labeled tracers (D3-leucine and 13C2-acetate) as well as ex vivo cholesterol efflux to HDL in subjects with (n = 6) and without (n = 6) CAD that had HDL-C levels >90th percentile. Healthy controls with HDL-C within the normal range (n = 6) who underwent the same procedures were used as the reference. Subjects with high HDL-C with and without CAD had similar plasma lipid levels and similar apoA-I, apoA-II, HDL FC, and CE pool sizes with no significant differences in fractional clearance rates (FCRs) or production rates (PRs) of these components between groups. Subjects with high HDL-C with and without CAD also had similar basal and cAMP-stimulated ex vivo cholesterol efflux to HDL. When all subjects were considered (n = 18), unstimulated non-ABCA1-mediated efflux (but not ABCA1-specific efflux) was correlated positively with apoA-I production (r = 0.552, p = 0.017) and HDL FC and CE pool sizes, and negatively with the fractional clearance rate of FC (r = −0.759, p = 4.1 × 10−4) and CE (r = −0.652, p = 4.57 × 10−3). Our data are consistent with the concept that ex vivo non-ABCA1 efflux capacity may correlate with slower in vivo turnover of HDL cholesterol moieties. The use of a dual labeling protocol provided for the first time the opportunity to assess the association of ex vivo cholesterol efflux capacity with in vivo HDL cholesterol metabolic parameters.  相似文献   

10.
(1) Background: Prostate-specific membrane antigen (PSMA) has been extensively studied in the last decade. It became a promising biological target in the diagnosis and therapy of PSMA-expressing cancer diseases. Although there are several radiolabeled PSMA inhibitors available, the search for new compounds with improved pharmacokinetic properties and simplified synthesis is still ongoing. In this study, we developed PSMA ligands with two different hybrid chelators and a modified linker. Both compounds have displayed a promising pharmacokinetic profile. (2) Methods: DATA5m.SA.KuE and AAZTA5.SA.KuE were synthesized. DATA5m.SA.KuE was labeled with gallium-68 and radiochemical yields of various amounts of precursor at different temperatures were determined. Complex stability in phosphate-buffered saline (PBS) and human serum (HS) was examined at 37 °C. Binding affinity and internalization ratio were determined in in vitro assays using PSMA-positive LNCaP cells. Tumor accumulation and biodistribution were evaluated in vivo and ex vivo using an LNCaP Balb/c nude mouse model. All experiments were conducted with PSMA-11 as reference. (3) Results: DATA5m.SA.KuE was synthesized successfully. AAZTA5.SA.KuE was synthesized and labeled according to the literature. Radiolabeling of DATA5m.SA.KuE with gallium-68 was performed in ammonium acetate buffer (1 M, pH 5.5). High radiochemical yields (>98%) were obtained with 5 nmol at 70 °C, 15 nmol at 50 °C, and 60 nmol (50 µg) at room temperature. [68Ga]Ga-DATA5m.SA.KuE was stable in human serum as well as in PBS after 120 min. PSMA binding affinities of AAZTA5.SA.KuE and DATA5m.SA.KuE were in the nanomolar range. PSMA-specific internalization ratio was comparable to PSMA-11. In vivo and ex vivo studies of [177Lu]Lu-AAZTA5.SA.KuE, [44Sc]Sc-AAZTA5.SA.KuE and [68Ga]Ga-DATA5m.SA.KuE displayed specific accumulation in the tumor along with fast clearance and reduced off-target uptake. (4) Conclusions: Both KuE-conjugates showed promising properties especially in vivo allowing for translational theranostic use.  相似文献   

11.
Firstly, 2,3-butanediol (2,3-BDO) is a chemical platform used in several applications. However, the pathogenic nature of its producers and the expensive feedstocks used limit its scale production. In this study, cane molasses was used for 2,3-BDO production by a nonpathogenic Clostridium ljungdahlii. It was found that cane molasses alone, without the addition of other ingredients, was favorable for use as the culture medium for 2,3-BDO production. Compared with the control (i.e., the modified DSMZ 879 medium), the differential genes are mainly involved in the pathways of carbohydrate metabolism, membrane transport, and amino acid metabolism in the case of the cane molasses alone. However, when cane molasses alone was used, cell growth was significantly inhibited by KCl in cane molasses. Similarly, a high concentration of sugars (i.e., above 35 g/L) can inhibit cell growth and 2,3-BDO production. More seriously, 2,3-BDO production was inhibited by itself. As a result, cane molasses alone with an initial 35 g/L total sugars was suitable for 2,3-BDO production in batch culture. Finally, an integrated fermentation and membrane separation process was developed to maintain high 2,3-BDO productivity of 0.46 g·L−1·h−1. Meanwhile, the varied fouling mechanism indicated that the fermentation properties changed significantly, especially for the cell properties. Therefore, the integrated fermentation and membrane separation process was favorable for 2,3-BDO production by C. ljungdahlii using cane molasses.  相似文献   

12.
The gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled receptor that is overexpressed in many solid cancers and is a promising target for cancer imaging and therapy. However, high pancreas uptake is a major concern in the application of reported GRPR-targeting radiopharmaceuticals, particularly for targeted radioligand therapy. To lower pancreas uptake, we explored Ga-complexed TacsBOMB2, TacsBOMB3, TacsBOMB4, TacsBOMB5, and TacsBOMB6 derived from a potent GRPR antagonist sequence, [Leu13ψThz14]Bombesin(7–14), and compared their potential for cancer imaging with [68Ga]Ga-RM2. The Ki(GRPR) values of Ga-TacsBOMB2, Ga-TacsBOMB3, Ga-TacsBOMB4, Ga-TacsBOMB5, Ga-TacsBOMB6, and Ga-RM2 were 7.08 ± 0.65, 4.29 ± 0.46, 458 ± 38.6, 6.09 ± 0.95, 5.12 ± 0.57, and 1.51 ± 0.24 nM, respectively. [68Ga]Ga-TacsBOMB2, [68Ga]Ga-TacsBOMB3, [68Ga]Ga-TacsBOMB5, [68Ga]Ga-TacsBOMB6, and [68Ga]Ga-RM2 clearly show PC-3 tumor xenografts in positron emission tomography (PET) images, while [68Ga]Ga-TacsBOMB5 shows the highest tumor uptake (15.7 ± 2.17 %ID/g) among them. Most importantly, the pancreas uptake values of [68Ga]Ga-TacsBOMB2 (2.81 ± 0.78 %ID/g), [68Ga]Ga-TacsBOMB3 (7.26 ± 1.00 %ID/g), [68Ga]Ga-TacsBOMB5 (1.98 ± 0.10 %ID/g), and [68Ga]Ga-TacsBOMB6 (6.50 ± 0.36 %ID/g) were much lower than the value of [68Ga]Ga-RM2 (41.9 ± 10.1 %ID/g). Among the tested [Leu13ψThz14]Bombesin(7–14) derivatives, [68Ga]Ga-TacsBOMB5 has the highest tumor uptake and tumor-to-background contrast ratios, which is promising for clinical translation to detect GRPR-expressing tumors. Due to the low pancreas uptake of its derivatives, [Leu13ψThz14]Bombesin(7–14) represents a promising pharmacophore for the design of GRPR-targeting radiopharmaceuticals, especially for targeted radioligand therapy application.  相似文献   

13.
The new minigastrin analog DOTA-MGS8 targeting the cholecystokinin-2 receptor (CCK2R) used in this study displays the combination of two site-specific modifications within the C-terminal receptor binding sequence together with an additional N-terminal amino acid substitution preventing fast metabolic degradation. Within this study, the preparation of 68Ga-labeled DOTA-MGS8 was validated using an automated synthesis module, describing the specifications and analytical methods for quality control for possible clinical use. In addition, preclinical studies were carried out to characterize the targeting potential. [68Ga]Ga-DOTA-MGS8 showed a high receptor-specific cell internalization into AR42J rat pancreatic cells (~40%) with physiological expression of rat CCK2R as well as A431-CCK2R cells transfected to stably express human CCK2R (~47%). A favorable biodistribution profile was observed in BALB/c nude mice xenografted with A431-CCK2R cells and mock-transfected A431 cells as control. The high tumor uptake of ~27% IA/g together with low background activity and limited uptake in non-target tissue confirms the potential for high-sensitivity positron emission tomography of stabilized MG analogs in patients with MTC and other CCK2R-related malignancies.  相似文献   

14.
Ex vivo expansion of hematopoietic stem cells (HSCs) with most current methods can hardly satisfy clinical application requirement. While in vivo, HSCs efficiently self‐renew in niche where they interact with 3D extracellular matrix and stromal cells. Therefore, co‐cultures of CD34+ cells and mesenchyme stem cells derived from human amniotic membrane (hAMSCs) on the basis of biomimetic macroporous three‐dimensional (3D) poly(ε‐caprolactone) (PCL) scaffolds are developed, where scaffolds and hAMSCs are applied to mimic structural and cellular microenvironment of HSCs. The influence of scaffolds, feeder cells, and contact manners on expansion and stemness maintenance of CD34+ cells is investigated in this protocol. Biomimetic scaffolds‐dependent co‐cultures of CD34+ cells and hAMSCs can effectively promote the expansion of CD34+ cells; meanwhile, indirect contact is superior to direct contact. The combination of biomimetic scaffolds and hAMSCs represents a new strategy for achieving clinical‐scale ex vivo expansion of CD34+ cells.

  相似文献   


15.
A method for a simple and fast production of38K for medical use has been developed. Different target materials have been tested, yield of38K and contaminants examined and chemical procedure and target system developed.  相似文献   

16.
A novel type of a binary Ga/Ag alloy electrodeposited on silver substrate as a solid target was developed. It was successfully used for the preparation of 68Gc/68Ga generator. The deposition was carried out in an alkali solution containing gallium, silver and certain electrolytes at controlled current and ambient temperature so that the quality of the deposits was proved to be suited for target irradiation. The yield of 68Ge with proton bombardment on this deposits via the 69Ga(p,2n) reaction was assessed. The chemical process for providing millicuries 68Ge/68Ga generator using a generic tin dioxide as an adsorbent was also established. It was revealed from long-term elution tests that approximately 60–70% of 68Ga could be eluted from the generator column with 4 ml of 1.0M HCl per elution, and high radio- and chemical purities of the eluates were quite satisfactory for application purposes.  相似文献   

17.
Layered transition metal oxides (LTMOs) are a kind of promising cathode materials for potassium-ion batteries because of their abundant raw materials and high theoretical capacities. However, their synthesis always involves long time calcination at a high temperature, leading to low synthesis efficiency and high energy consumption. Herein, an ultra-fast synthesis strategy of Mn-based LTMOs in minutes is developed directly from alkali-transition metal based-metal–organic frameworks (MOFs). The phase transformation from the MOF to LTMO is systematically investigated by thermogravimetric analysis, variable temperature optical microscopy and X-ray diffraction, and the results reveal that the uniform distribution of K and Mn ions in MOFs promotes fast phase transformation. As a cathode in potassium-ion batteries, the fast-synthesized Mn-based LTMO demonstrates an excellent electrochemical performance with 119 mA h g−1 and good cycling stability, highlighting the high production efficiency of LTMOs for future large-scale manufacturing and application of potassium-ion batteries.

An ultra-fast synthesis method for layered transition metal oxide cathodes (KxMnO2) was developed via minute calcination of metal–organic frameworks for potassium-ion batteries.  相似文献   

18.
Frutalin is a plant lectin with beneficial immunobiological action, although the access to its active form is still restricted. Moreover, there is a knowledge gap on isoform activity and glycosylation impact on its bioactivity, and recombinant production protocols were seen as ineffective. Here, a simpler and faster production and purification protocol was developed, attaining a yield of purified frutalin 3.3-fold higher than that obtained previously. Hemagglutination assays confirmed that this frutalin isoform could not agglutinate rabbit erythrocytes, while maintaining the native tetrameric structure, as indicated by DLS analysis, and strong interaction with methyl-alpha-galactose, in fluorescence spectroscopy studies. The cytotoxicity of the recombinant frutalin isoform was shown in a broad panel of human cancer cells: colon (HCT116), melanoma (A375), triple-negative breast cancer (MDA-MB-231), and ovarian (IGROV-1). Treatment with 8.5–11.8 μM TrxFTL reduced proliferation of all cancer cells to half in 48 h. This anti-proliferative effect encompasses the p53 pathway since it was significantly reduced in p53-null colon cancer cells (HCT116 p53−/−; GI50 of 25.0 ± 3.0 μM), when compared to the isogenic p53-positive cells (HCT116 p53+/+; GI50 of 8.7 ± 1.8 μM; p < 0.002). This recombinantly produced frutalin isoform has relevant cytotoxic effect and its biological activity is not dependent on glycosylation. The developed E. coli production and purification protocol generates high yield of non-glycosylated frutalin isoform with potent cytotoxic activity, enabling the development of novel anticancer p53-targeting therapies.  相似文献   

19.
The determination of Zn in geological samples using instrumental neutron activation analysis is usually done using the 64Zn(n,γ)65Zn reaction and its 244 day half-life. However this analysis has proven to be potentially difficult. This is due to its relatively low neutron absorption cross section and gamma ray intensity, and the relatively high neutron absorption cross section and gamma intensity of 46Sc, which has an energy peak that is only 5 keV greater than 65Zn. The use of a high resolution detector makes it possible to differentiate between the 65Zn and 46Sc photopeaks peaks. However, the dominating 46Sc gamma ray can even make peak fitting routines unsuccessful in the proper determination of 65Zn. The use of a Compton suppression system suppresses the 46Sc peak, which has two coincident gamma-rays, and this greatly improves the ratio of the height of the 46Sc 1120.5 keV photopeak to the 65Zn 1115.4 keV photopeak. Irradiating the sample with epithermal neutrons also improves the measurement since 65Zn has a higher cross section for epithermal neutrons rather than thermal neutrons, whereas 46Sc has a higher thermal cross section. Another technique to determine zinc is the use of 68Zn(n,γ)69mZn reaction with its 13 h half-life using epithermal neutrons and Compton suppression INAA. However, the 438 keV gamma ray of 69mZn has no interference with any adjoining photopeak. A critical comparison of these two methods is given.  相似文献   

20.
Summary Vanadium-48 was produced with an activity of 222 MBq (6 mCi) by the natTi(d,xn)48V nuclear reactions in the U-120 cyclotron. The energy of the irradiating beam was 13 MeV, its intensity 5 μA, and the metallic Ti target dimension 11’11 mm2 (0.1 mm thickness). For target cooling, circulated water in target backside was used. After 3 cooling days, only 48V and some 46Sc (T1/2 = 83.8 d), produced by the side nuclear reaction 48Ti(d,α)46Sc were found in the target. For production of the radiotracer of 48V and for the preparation of source for standardization of 48V by 4πβ-γ coincidence, the Ti target was dissolved either in HF or in H2SO4. For both dissolving methods an ion-exchange separation procedure was developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号