首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Gold nanoclusters (AuNCs) with well-defined atomically precise structures present promising emissive prospects for excellent biocompatibility and optical properties. However, the relatively low luminescence efficiency in solutions for most AuNCs is still a perplexing issue to be resolved. In this study, a facile supramolecular strategy was developed to rigidify the surface of FGGC-AuNCs by modifying transition rates in excited states via host–guest self-assembly between cucurbiturils (CBs) and FGGC (Phe–Gly–Gly–Cys peptide). In aqueous solutions, CB/FGGC-AuNCs presented an extremely enhanced red phosphorescence emission with a quantum yield (QY) of 51% for CB[7] and 39% for CB[8], while simple FGGC-AuNCs only showed a weak emission with a QY of 7.5%. Furthermore, CB[7]/FGGC-AuNCs showed excellent results in live cell luminescence imaging for A549 cancer cells. Our study demonstrates that host–guest self-assembly assisted by macrocycles is a facile and effective tool to non-covalently modify and adjust optical properties of nanostructures on ultra-small scales.

A host–guest self-assembly approach was developed to brighten Au22(FGGC)18 nanoclusters between CB[n] (n = 7, 8) and FGGC peptide in aqueous solutions.  相似文献   

2.
A novel synthesis of thiazolo[2,3-b]quinazolines 4(a–e), pyrido[2′,3′:4,5]thiazolo[2,3-b]quinazolines {5(a–e), 6(a–e), and 7(a–e)}, pyrano[2′,3′:4,5]thiazolo[2,3-b]quinazolines 8(a–e), and benzo[4,5]thiazolo[2,3-b]quinazoloine9(a–e) derivatives starting from 2-(Bis-methylsulfanyl-methylene)-5,5-dimethyl-cyclohexane-1,3-dione 2 as efficient α,α dioxoketen dithioacetal is reported and the synthetic approaches of these types of compounds will provide an innovative molecular framework to the designing of new active heterocyclic compounds. In our study, we also present optimization of the synthetic method along with a biological evaluation of these newly synthesized compounds as antioxidants and antibacterial agents against the bacterial strains, like S. aureus, E. coli, and P. aeruginosa. Among all the evaluated compounds, it was found that some showed significant antioxidant activity at 10 μg/mL while the others exhibited better antibacterial activity at 100 μg/mL. The results of this study showed that compound 6(c) possessed remarkable antibacterial activity, whereas compound 9(c) exhibited the highest efficacy as an antioxidant. The structures of the new synthetic compounds were elucidated by elemental analysis, IR, 1H-NMR, and 13C-NMR.  相似文献   

3.
《中国化学快报》2023,34(7):108040
The binding interactions between 4-aminopyridine (4-AP) and a series of cucurbit[n]urils (Q[5], Q[6], TMeQ[6], Q[7], Q[8]) have been studied using 1H NMR spectroscopy, UV–vis absorption spectroscopy, isothermal titration calorimetry (ITC) and X-ray crystallography. The data indicates that the Q[5]@4-AP complex exhibits exo binding, which is not observed in the other four host-guest complexes. Furthermore, X-ray crystallography clearly reveals how the Q[n]s bind with 4-AP to form complexes, for example Q[5] forms an outer-surface complex, whilst Q[6], TMeQ[6] and Q[7] formed 1:1 host and guest type complexes, and Q[8] formed a stable 1:2 ternary complex due to its large cavity, which can accommodate two 4-AP molecules.  相似文献   

4.
By arranging substrates in a “reaction ready” state through noncovalent interactions, supramolecular nanoreactors/catalysts show high selectivity and/or rate acceleration features. Herein, we report the host–guest complexation of 9-(10-)substituted anthracene derivatives (G1–G3) with cucurbit[n]uril (CB[n], n = 8, 10), and the photoreactions of these derivatives in the presence of CB[n] hosts. Both CB[10] and CB[8] showed no obvious effects on the photoreaction of 9,10-disubstituted derivative G1. For G2 and G3, CB[10] operated as either a nanoreactor or catalyst (10%) for the photodimerization of two compounds with high selectivity and high yield. However, although CB[8] formed a 1 : 2 complex with G2, as also observed with CB[10], the photosolvolysis product (9-anthracenemethanol) was obtained quantitatively after photoirradiation of the CB[8]·2G2 complex. This unexpected photosolvolysis was rationalized by a plausible catalytic cycle in which anthracene acts as a photoremovable protecting group (PPG) and the carbonium ion intermediate is stabilized by CB[8].

The photodimerization of 9-substituted anthracene derivative was tremendously promoted by a catalytic amount of cucurbit[10]uril (CB[10]) in water. While CB[8] exclusively induced the photosolvolysis of the anthracene derivative.  相似文献   

5.
Two symmetric amphiphilic imidazolium ionic liquids having ω-undecenyl chains form supramolecular complexes with CB[7] and CB[8] in water as revealed by 1H NMR spectroscopy and MALDI-MS. Binding constants in the range 104 to 105 M?1 were estimated from the conductivity measurements for the 1:1 complexes of these imidazolium ionic liquids with CB[7] and CB[8]. Radical initiated polymerization of these host–guest complexes at concentrations above the critical self-assembly concentration of imidazolium ionic liquids to form liposomes, destroys completely (CB[7]) or partially (CB[8]) the host–guest ionic liquid@CB[n] complex; this behaviour was proved by titration with acridine orange tricyclic dye, of CB[n]s in the colloidal solutions of the liposomes before and after performing dialysis to remove free CB[n]s. Thus, the increase in the fluorescence emission of acridine orange by CB[7] is not observed if the polymerized ionic liquid@CB[7] complex is submitted to dialysis to remove uncomplexed CB[7]. Analogous study by titration of absorbance change of acridine orange solutions caused by CB[8], reveals only a partial destruction of the host–guest complex by self-assembly of amphiphilic ionic liquid above the critical self-assembly concentration. The results obtained have been rationalized considering that the driving force for the formation of supramolecular ionic liquid@CB[n] complexes is a hydrophobic interaction between the apolar alkenyl chain and the cucurbituril interior cavity and that these hydrophobic interactions are disturbed when self-assembly leading to liposomes occurs.  相似文献   

6.
The preparation, characterization and electrochemical and photophysical properties of a series of desymmetrized heteroleptic [Cu(P^P)(N^N)][PF6] compounds are reported. The complexes incorporate the chelating P^P ligands bis(2-(diphenylphosphanyl)phenyl)ether (POP) and (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane) (xantphos), and 6-substituted 2,2′-bipyridine (bpy) derivatives with functional groups attached by –(CH2)n– spacers: 6-(2,2′-bipyridin-6-yl)hexanoic acid (1), 6-(5-phenylpentyl)-2,2′-bipyridine (2) and 6-[2-(4-phenyl-1H-1,2,3,triazol-1-yl)ethyl]-2,2′-bipyridine (3). [Cu(POP)(1)][PF6], [Cu(xantphos)(1)][PF6], [Cu(POP)(2)][PF6], [Cu(xantphos)(2)][PF6], and [Cu(xantphos)(3)][PF6] have been characterized in solution using multinuclear NMR spectroscopy, and the single crystal structure of [Cu(xantphos)(3)][PF6].0.5Et2O was determined. The conformation of the 6-[2-(4-phenyl-1H-1,2,3,triazol-1-yl)ethyl]-substituent in the [Cu(xantphos)(3)]+ cation is such that the α- and β-CH2 units reside in the xanthene ‘bowl’ of the xantphos ligand. The 6-substituent desymmetrizes the structure of the [Cu(P^P)(N^N)]+ cation and this has consequences for the interpretation of the solution NMR spectra of the five complexes. The NOESY spectra and EXSY cross-peaks provide insight into the dynamic processes operating in the different compounds. For powdered samples, emission maxima are in the range 542–555 nm and photoluminescence quantum yields (PLQYs) lie in the range 13–28%, and a comparison of PLQYs and decay lifetimes with those of [Cu(xantphos)(6-Mebpy)][PF6] indicate that the introduction of the 6-substituent is not detrimental in terms of the photophysical properties.  相似文献   

7.
A series of porphyrin triads (1–6), based on the reaction of trans-dihydroxo-[5,15-bis(3-pyridyl)-10,20-bis(phenyl)porphyrinato]tin(IV) (SnP) with six different phenoxy Zn(II)-porphyrins (ZnLn), was synthesized. The cooperative metal–ligand coordination of 3-pyridyl nitrogens in the SnP with the phenoxy Zn(II)-porphyrins, followed by the self-assembly process, leads to the formation of nanostructures. The red-shifts and remarkable broadening of the absorption bands in the UV–vis spectra for the triads in CHCl3 indicate that nanoaggregates may be produced in the self-assembly process of these triads. The emission intensities of the triads were also significantly reduced due to the aggregation. Microscopic analyses of the nanostructures of the triads reveal differences due to the different substituents on the axial Zn(II)-porphyrin moieties. All these nanomaterials exhibited efficient photocatalytic performances in the degradation of rhodamine B (RhB) dye under visible light irradiation, and the degradation efficiencies of RhB in aqueous solution were observed to be 72~95% within 4 h. In addition, the efficiency of the catalyst was not impaired, showing excellent recyclability even after being applied for the degradation of RhB in up to five cycles.  相似文献   

8.
Aqueous room temperature phosphorescence (aRTP) from purely organic materials has been intriguing but challenging. In this article, we demonstrated that the red aRTP emission of 2Br–NDI, a water-soluble 4,9-dibromonaphthalene diimide derivative as a chloride salt, could be modulated by anion–π and intermolecular electronic coupling interactions in water. Specifically, the rarely reported stabilization of anion–π interactions in water between Cl and the 2Br–NDI core was experimentally evidenced by an anion–π induced long-lived emission (λAnion–π) of 2Br–NDI, acting as a competitive decay pathway against the intrinsic red aRTP emission (λPhos) of 2Br–NDI. In the initial expectation of enhancing the aRTP of 2Br–NDI by inclusion complexation with macrocyclic cucurbit[n]urils (CB[n]s, n = 7, 8, 10), we surprisingly found that the exclusion complexation between CB[8] and 2Br–NDI unconventionally endowed the complex with the strongest and longest-lived aRTP due to the strong intermolecular electronic coupling between the nπ* orbit on the carbonyl rims of CB[8] and the ππ* orbit on 2Br–NDI in water. It is anticipated that these intriguing findings may inspire and expand the exploration of aqueous anion–π recognition and CB[n]-based aRTP materials.

The aqueous room temperature phosphorescence of 2Br–NDI is modulated by long-lived-emitting anion–π interactions and tremendously enhanced by intermolecular electronic coupling interactions with the ISC-boosting carbonyl rims of CB[8] host.  相似文献   

9.
The new homochiral 1D metal–organic coordination polymer [Cu2(EDPB)•H2O]n was synthesized starting from the original 3,3′-ethyne-1,2-diylbis[6-(L-prolylamino)benzoic acid] (H4EDPB). The unique crystal structure of the new compound was established by powder X-ray diffraction. The [Cu2(EDPB)•H2O]n system shows catalytic activity and enantioselectivity in a Henry reaction of p-nitrobenzaldehyde with nitromethane.  相似文献   

10.
A novel hybrid PKS–NRPS alkaloid, xylarialoid A (1), containing a 13-membered macrocyclic moiety and [5,5,6] fused tricarbocyclic rings, together with ten known cytochalasins (2–11), was isolated from a plant-derived endophytic fungus, Xylaria arbuscula. The chemical structures of all compounds were elucidated using 1D and 2D NMR, HR ESIMS spectroscopic analyses, and electronic circular dichroism (ECD) calculation. Compounds 1–3 and 10 exhibited significant antitumor activities against A549 and Hep G2 cell lines, with IC50 values of 3.6–19.6 μM. In addition, compound 1 showed potent anti-inflammatory activity against LPS-induced nitric oxide (NO) production in macrophage RAW 264.7 cells (IC50, 6.6 μM).  相似文献   

11.
Photophysical properties of aqueous solutions of the styryl dye 4-[(E)-2-(3,4-dimethoxyphenyl)-1-ethylpyridinium] perchlorate (1) in the presence of cucurbit[n]urils (CB[n]; n = 5, 6, 8) have been studied by fluorescent spectroscopy methods. The fluorescence intensity of a 10–6 mol L–1 solution of 1 increases by a factor of 12.6 upon the formation of 1 : 1 inclusion complexes with CB[6] or 1.3 in complexes with CB[8]. Upon the formation of inclusion complexes, the average lifetime of the electronically excited state of 1 increases to about 1 ns for both CB[6] and CB[8]. On the basis of fluorescence anisotropy measurements, the rotational relaxation times were estimated to be 408, 314, and 183 ps for the complexes with CB[6], CB[8], and for unbound 1, respectively. Using the fluorescence titration method developed for the case of poorly soluble cavitands, the binding constant of 1 with CB[6] was determined to be 1.1 × 105 L mol–1. The addition of CB[5] does not lead to changes in the photophysical properties of a solution of 1, indicating the absence of complexes between CB[5] and 1. It has been found on the basis of the experimental data that the fluorescence rate constant of 1 decreases about twice in the complex with CB[8], but doubles in the complex with CB[6].  相似文献   

12.
Pheromones are biologically important in fruit fly mating systems, and also have potential applications as attractants or mating disrupters for pest management. Bactrocera kraussi (Hardy) (Diptera: Tephritidae) is a polyphagous pest fruit fly for which the chemical profile of rectal glands is available for males but not for females. There have been no studies of the volatile emissions of either sex or of electrophysiological responses to these compounds. The present study (i) establishes the chemical profiles of rectal gland contents and volatiles emitted by both sexes of B. kraussi by gas chromatography–mass spectrometry (GC–MS) and (ii) evaluates the detection of the identified compounds by gas chromatography–electroantennogram detection (GC–EAD) and –electropalpogram detection (GC–EPD). Sixteen compounds are identified in the rectal glands of male B. kraussi and 29 compounds are identified in the rectal glands of females. Of these compounds, 5 were detected in the headspace of males and 13 were detected in the headspace of females. GC–EPD assays recorded strong signals in both sexes against (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 2-ethyl-7-mehtyl-1,6-dioxaspiro[4.5]decane isomer 2, (E,Z)/(Z,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, and (Z,Z)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane. Male antennae responded to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 2-methyl-6-pentyl-3,4-dihydro-2H-pyran, 6-hexyl-2-methyl-3,4-dihydro-2H-pyran, 6-oxononan-1-ol, ethyl dodecanoate, ethyl tetradecanoate and ethyl (Z)-hexadec-9-enoate, whereas female antennae responded to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and 2-methyl-6-pentyl-3,4-dihydro-2H-pyran only. These compounds are candidates as pheromones mediating sexual interactions in B. kraussi.  相似文献   

13.
An unprecedented zirconium metal–organic framework featuring a T-shaped benzimidazole strut was constructed and employed as a sponge-like material for selective absorption of macrocyclic guests. The neutral benzimidazole domain of the as-synthesized framework can be readily protonated and fully converted to benzimidazolium. Mechanical threading of [24]crown-8 ether wheels onto recognition sites to form pseudorotaxanes was evidenced by solution nuclear magnetic resonance, solid-state fluorescence, and infrared spectroscopy. Selective absorption of [24]crown-8 ether rather than its dibenzo counterpart was also observed. Further study reveals that this binding process is reversible and acid–base switchable. The success of docking macrocyclic guests in crystals via host–guest interactions provides an alternative route to complex functional materials with interpenetrated structures.

A T-shaped ligand was designed as struts for building a zirconium metal–organic framework. Acid–base switchable docking and releasing a 24-membered crown ether inside crystals was successfully accomplished via post-synthetic modification.  相似文献   

14.
The exploration of the ionic liquids’ mechanism of action on nucleobase’s structure and properties is still limited. In this work, the binding model of the 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br, n = 2, 4, 6, 8, 10) ionic liquids to the thymine (T) was studied in a water environment (PCM) and a microhydrated surroundings (PCM + wH2O). Geometries of the mono-, di-, tri-, and tetra-ionic thymine (T-wH2O-y[Cnmim]+-xBr, w = 5~1 and x + y = 0~4) complexes were optimized at the M06-2X/6-311++G(2d, p) level. The IR and UV-Vis spectra, QTAIM, and NBO analysis for the most stable T-4H2O-Br-1, T-3H2O-[Cnmim]+-Br-1, T-2H2O-[Cnmim]+-2Br-1, and T-1H2O-2[Cnmim]+-2Br-1 hydrates were presented in great detail. The results show that the order of the arrangement stability of thymine with the cations (T-[Cnmim]+) by PCM is stacking > perpendicular > coplanar, and with the anion (T-Br) is front > top. The stability order for the different microhydrates is following T-5H2O-1 < T-4H2O-Br-1 < T-3H2O-[Cnmim]+-Br-1 < T-2H2O-[Cnmim]+-2Br-1 < T-1H2O-2[Cnmim]+-2Br-1. A good linear relationship between binding EB values and the increasing number (x + y) of ions has been found, which indicates that the cooperativity of interactions for the H-bonding and π-π+ stacking is varying incrementally in the growing ionic clusters. The stacking model between thymine and [Cnmim]+ cations is accompanied by weaker hydrogen bonds which are always much less favorable than those in T-xBr complexes; the same trend holds when the clusters in size grow and the length of alkyl chains in the imidazolium cations increase. QTAIM and NBO analytical methods support the existence of mutually reinforcing hydrogen bonds and π-π cooperativity in the systems.  相似文献   

15.
Transition metal-catalysed C–H bond functionalisations have been extensively developed in organic and medicinal chemistry. Among these catalytic approaches, the selective activation of C(sp3)–H and C(sp2)–H bonds is particularly appealing for its remarkable synthetic versatility, yet it remains highly challenging. Herein, we demonstrate the first example of temperature-dependent selective C–H functionalisation of unactivated C(sp3)–H or C(sp2)–H bonds at remote positions through palladium catalysis using 7-pyridyl-pyrazolo[1,5-a]pyrimidine as a new directing group. At 120 °C, C(sp3)–H arylation was triggered by the chelation of a rare [6,5]-fused palladacycle, whereas at 140 °C, C(sp2)–H arylation proceeded instead through the formation of a 16-membered tetramer containing four 7-pyridyl-pyrazolo[1,5-a]pyrimidine–palladium chelation units. The subsequent mechanistic study revealed that both C–H activations shared a common 6-membered palladacycle intermediate, which was then directly transformed to either the [6,5]-fused palladacycle for C(sp3)–H activation at 120 °C or the tetramer for C(sp2)–H arylation at 140 °C with catalytic amounts of Pd(OAc)2 and AcOH. Raising the temperature from 120 °C to 140 °C can also convert the [6,5]-fused palladacycle to the tetramer with the above-mentioned catalysts, hence completing the C(sp2)–H arylation ultimately.

Unprecedented 16-membered tetramer or [6,5]-fused palladacycle, mutually shadowboxing-like transformed from the shared common intermediate, accomplishes the Pd-catalysed temperature-dependent selective arylation of C(sp2)–H or C(sp3)–H.  相似文献   

16.
《中国化学快报》2022,33(8):3613-3622
Chiral pillar[n]arenes have shown great research value and application prospect in construction of chiral materials and chiral applications, due to their inherent planar chiral configurations, chiral recognition ability, easy modification and highly symmetric hydrophobic cavity. This review systematically summarized the conformation inversion factors of planar chiral pillar[5]arenes (pR/pS), such as solvents, temperature, substituent size, alkyl chains, chiral and achiral guest molecules. We firstly introduced the applications of chiral pillar[n]arenes for constructing chiral materials and pointed out that planar conformation inversion showed a great potential role in constructing chiral materials. Then, we mainly concluded the chiral applications of chiral and planar chiral pillar[n]arenes like chiral enantiomer analysis by circular dichroism, electrochemistry or chiral fluorescence sensing. From this review, we found that the inherent planar chiral conformation of chiral pillar[n]arenes have played a very important role in chiral field in the future.  相似文献   

17.
The appropriate 1-arylhydrazinecarbonitriles 1a–c are subjected to the reaction with 2-chloro-4,5-dihydro-1H-imidazole (2), yielding 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imines 3a–c, which are subsequently converted into the corresponding amides 4a–e, 8a–c, sulfonamides 5a–n, 9, ureas 6a–I, and thioureas 7a–d. The structures of the newly prepared derivatives 3a–c, 4a–e, 5a–n, 6a–i, 7a–d, 8a–c, and 9 are confirmed by IR, NMR spectroscopic data, as well as single-crystal X-ray analyses of 5e and 8c. The in vitro cytotoxic potency of these compounds is determined on a panel of human cancer cell lines, and the relationships between structure and antitumor activity are discussed. The most active 4-chloro-N-(2-(4-chlorophenyl)-7-(4,5-dihydro-1H-imidazol-2-yl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)benzamide (4e) and N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-[1,1′-biphenyl]-4-sulfonamide (5l) inhibits the growth of the cervical cancer SISO and bladder cancer RT-112 cell lines with IC50 values in the range of 2.38–3.77 μM. Moreover, N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-phenoxybenzenesulfonamide (5m) has the best selectivity towards the SISO cell line and induces apoptosis in this cell line.  相似文献   

18.
The condensation of aromatic dialdehydes with chiral diamines, such as 1,2-trans-diaminocyclohexane, leads to various enantiopure or meso-type macrocyclic Schiff bases, including [2 + 2], [3 + 3], [4 + 4], [6 + 6] and [8 + 8] condensation products. Unlike most cases of macrocycle synthesis, the [3 + 3] macrocycles of this type are sometimes obtained in high yields by direct condensation without a metal template. Macrocycles of other sizes from this family can often be selectively obtained in high yields by a suitable choice of metal template, solvent, or chirality of the building blocks. In particular, the application of a cadmium(II) template results in the expansion of the [2 + 2] macrocycles into giant [6 + 6] and [8 + 8] macrocycles. These imine macrocycles can be reduced to the corresponding macrocyclic amines which can act as hosts for the binding of multiple cations or multiple anions.  相似文献   

19.
A series of six seven-coordinate pentagonal-bipyramidal (PBP) erbium complexes, with acyclic pentadentate [N3O2] Schiff-base ligands, 2,6-diacetylpyridine bis-(4-methoxybenzoylhydrazone) [H2DAPMBH], or 2,6-diacethylpyridine bis(salicylhydrazone) [H4DAPS], and various apical ligands in different charge states were synthesized: [Er(DAPMBH)(C2H5OH)Cl] (1); [Er(DAPMBH)(H2O)Cl]·2C2H5OH (2); [Er(DAPMBH)(CH3OH)Cl] (3); [Er(DAPMBH)(CH3OH)(N3)] (4); [(Et3H)N]+[Er(H2DAPS)Cl2] (5); and [(Et3H)N]+[Y0.95Er0.05(H2DAPS)Cl2] (6). The physicochemical properties, crystal structures, and the DC and AC magnetic properties of 1–6 were studied. The AC magnetic measurements revealed that most of Compounds 1–6 are field-induced single-molecule magnets, with estimated magnetization energy barriers, Ueff ≈ 16–28 K. The experimental study of the magnetic properties was complemented by theoretical analysis based on ab initio and crystal field calculations. An experimental and theoretical study of the magnetism of 1–6 shows the subtle impact of the type and charge state of the axial ligands on the SMM properties of these complexes.  相似文献   

20.
Chemical reduction of several cycloparaphenylenes (CPPs) ranging in size from [8]CPP to [12]CPP has been investigated with potassium metal in THF. The X-ray diffraction characterization of the resulting doubly-reduced [n]CPPs provided a unique series of carbon nanohoops with increasing dimensions and core flexibility for the first comprehensive structural analysis. The consequences of electron acquisition by a [n]CPP core have been analyzed in comparison with the neutral parents. The addition of two electrons to the cyclic carbon framework of [n]CPPs leads to the characteristic elliptic core distortion and facilitates the internal encapsulation of sizable cationic guests. Molecular and solid-state structure changes, alkali metal binding and unique size-dependent host abilities of the [n]CPP2− series with n = 6–12 are discussed. This in-depth analysis opens new perspectives in supramolecular chemistry of [n]CPPs and promotes their applications in size-selective guest encapsulation and chemical separation.

The series of doubly-reduced cycloparaphenylenes (CPPs) with increasing dimensions and flexibility shows the size-dependent structural changes and enhanced host abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号