首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysimachia foenum-graecum has been used as an oriental medicine with anti-inflammatory effect. The anti-obesity effect of L. foenum-graecum extract (LFE) was first discovered in our screening of natural product extract library against adipogenesis. To characterize its anti-obesity effects and to evaluate its potential as an anti-obesity drug, we performed various obesity-related experiments in vitro and in vivo. In adipogenesis assay, LFE blocked the differentiation of 3T3-L1 preadipocyte in a dose-dependent manner with an IC50 of 2.5 μg/ml. In addition, LFE suppressed the expression of lipogenic genes, while increasing the expression of lipolytic genes in vitro at 10 μg/ml and in vivo at 100 mg/kg/day. The anti-adipogenic and anti-lipogenic effect of LFE seems to be mediated by the inhibition of PPARγ and C/EBPα expression as shown in in vitro and in vivo, and the suppression of PPARγ activity in vitro. Moreover, LFE stimulated fatty acid oxidation in an AMPK-dependent manner. In high-fat diet (HFD)-induced obese mice (n = 8/group), oral administration of LFE at 30, 100, and 300 mg/kg/day decreased total body weight gain significantly in all doses tested. No difference in food intake was observed between vehicle- and LFE-treated HFD mice. The weight of white adipose tissues including abdominal subcutaneous, epididymal, and perirenal adipose tissue was reduced markedly in LFE-treated HFD mice in a dose-dependent manner. Treatment of LFE also greatly improved serum levels of obesity-related biomarkers such as glucose, triglycerides, and adipocytokines leptin, adiponectin, and resistin. All together, these results showed anti-obesity effects of LFE on adipogenesis and lipid metabolism in vitro and in vivo and raised a possibility of developing LFE as anti-obesity therapeutics.  相似文献   

2.
Nonalcoholic steatohepatitis (NASH) can progress into liver cirrhosis; however, no definite treatment is available. Omega-3 polyunsaturated fatty acid (omega-3) has been reported to alleviate experimental NASH, although its beneficial effect was not evident when tested clinically. Thus, this study aimed to investigate the additive effect of omega-3 and ursodeoxycholic acid (UDCA) on diet-induced NASH in mice. C57BL/6 mice were given a high-fat diet (HFD) for 24 weeks, at which point the mice were divided into three groups and fed HFD alone, HFD with omega-3 or HFD with omega-3 in combination with UDCA for another 24 weeks. Feeding mice an HFD and administering omega-3 improved histologically assessed liver fibrosis, and UDCA in combination with omega-3 further attenuated this disease. The assessment of collagen α1(I) expression agreed with the histological evaluation. Omega-3 in combination with UDCA resulted in a significant attenuation of inflammation whereas administering omega-3 alone failed to improve histologically assessed liver inflammation. Quantitative analysis of tumor necrosis factor α showed an additive effect of omega-3 and UDCA on liver inflammation. HFD-induced hepatic triglyceride accumulation was attenuated by omega-3 and adding UDCA accentuated this effect. In accordance with this result, the expression of sterol regulatory binding protein-1c decreased after omega-3 administration and adding UDCA further diminished SREBP-1c expression. The expression of inducible nitric oxide synthase (iNOS), which may reflect oxidative stress-induced tissue damage, was suppressed by omega-3 administration and adding UDCA further attenuated iNOS expression. These results demonstrated an additive effect of omega-3 and UDCA for alleviating fibrosis, inflammation and steatosis in diet-induced NASH.  相似文献   

3.
Five new triterpene saponins perennisosides VIII (1), IX (2), X (3), XI (4), and XII (5) were isolated from the MeOH-eluated fraction of the methanolic extract from the flowers of Bellis perennis. The MeOH-eluted fraction of the methanolic extract from the flowers of B. perennis was found to inhibit gastric emptying in olive oil-loaded mice at a dose of 200 mg/kg, per os (p.o.). The stereostructures of 1-5 were elucidated on the basis of chemical and spectroscopic evidence.  相似文献   

4.
Peroxisome proliferator-activated receptor α (PPARα) activation in rodents is thought to improve insulin sensitivity by decreasing ectopic lipids in non-adipose tissues. Fenofibrate, a lipid-modifying agent that acts as a PPARα agonist, may prevent adipocyte hypertrophy and insulin resistance by increasing intracellular lipolysis from adipose tissue. Consistent with this hypothesis, fenofibrate decreased visceral fat mass and adipocyte size in high fat diet-fed obese mice, and concomitantly increased the expression of PPARα target genes involved in fatty acid β-oxidation in both epididymal adipose tissue and differentiated 3T3-L1 adipocytes. However, mRNA levels of adipose marker genes, such as leptin and TNFα, were decreased in epididymal adipose tissue by fenofibrate treatment. Fenofibrate not only reduced circulating levels of free fatty acids and triglycerides, but also normalized hyperinsulinemia and hyperglycemia in obese mice. Blood glucose levels of fenofibrate-treated mice were significantly reduced during intraperitoneal glucose tolerance test compared with obese controls. These results suggest that fenofibrate-induced fatty acid β-oxidation in visceral adipose tissue may be one of the major factors leading to decreased adipocyte size and improved insulin sensitivity.  相似文献   

5.
(1) Background: The obesity epidemic has been drastically progressing in both children and adults worldwide. Pharmacotherapy is considered necessary for its treatment. However, many anti-obesity drugs have been withdrawn from the market due to their adverse effects. Instead, natural products (NPs) have been studied as a source for drug discovery for obesity, with the goal of limiting the adverse effects. Zebrafish are ideal model animals for in vivo testing of anti-obesity NPs, and disease models of several types of obesity have been developed. However, the evidence for zebrafish as an anti-obesity drug screening model are still limited. (2) Methods: We performed anti-adipogenic testing using the juvenile zebrafish obesogenic test (ZOT) and mouse 3T3-L1 preadipocytes using the focused NP library containing 38 NPs and compared their results. (3) Results: Seven and eleven NPs reduced lipid accumulation in zebrafish visceral fat tissues and mouse adipocytes, respectively. Of these, five NPs suppressed lipid accumulation in both zebrafish and 3T3-L1 adipocytes. We confirmed that these five NPs (globin-digested peptides, green tea extract, red pepper extract, nobiletin, and Moringa leaf powder) exerted anti-obesity effects in diet-induced obese adult zebrafish. (4) Conclusions: ZOT using juvenile fish can be a high-throughput alternative to ZOT using adult zebrafish and can be applied for in vivo screening to discover novel therapeutics for visceral obesity and potentially also other disorders.  相似文献   

6.
7.
Dyglomera® is an aqueous ethanol extract of the fruit pods of Dichrostachys glomerata, a Cameroonian spice. Several studies have shown its anti-diabetic and anti-obesity effects. However, the underlying mechanisms for such effects remain unclear. Thus, the objective of this study was to investigate the anti-obesity effect of Dyglomera® and its underlying mechanisms in mice with high-fat diet-induced obesity and 3T3-L1 adipocytes. Our results revealed that Dyglomera® inhibited adipogenesis and lipogenesis by regulating AMPK phosphorylation in white adipose tissues (WATs) and 3T3-L1 adipocytes and promoted lipolysis by increasing the expression of lipolysis-related proteins. These results suggest that Dyglomera® can be used as an effective dietary supplement for treating obesity due to its modulating effect on adipogenesis/lipogenesis and lipolysis.  相似文献   

8.
9.
3T3-L1 adipocytes express the B-cell-activating factor (BAFF) and three different BAFF receptors (BAFF-Rs). Furthermore, BAFF expression is regulated by inflammatory modulators, such as tumor necrosis factor-α and rosiglitazone. Here we investigated the function of BAFF in 3T3-L1 adipocytes and RAW 264.7 macrophages. We examined adipokine expression in 3T3-L1 adipocytes treated with 10 ng ml−1 BAFF. We also examined inflammatory molecule expression in RAW 264.7 macrophages treated with 10 or 100 ng ml−1 BAFF. We examined BAFF expression in the coculture of 3T3-L1 adipocytes and RAW 264.7 macrophages, as well as in white adipose tissue (WAT) of diet-induced obese (DIO) mice. We found that BAFF decreases leptin and adiponectin expression, but increases the expression of proinflammatory adipokines monocyte chemotactic protein-1, interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and haptoglobin. Coculturing the two cell types resulted in increased BAFF mRNA and protein expression, as well as modulation of BAFF-R mRNA expression in both cell types. These data indicate that BAFF might mediate adipocyte and macrophage interaction. When RAW 264.7 macrophages were treated with BAFF, BAFF-R expression was modulated as in coculture, and nitric oxide synthase and IL-6 expression increased. BAFF expression also increased in WAT of DIO mice. We propose that BAFF can regulate adipokine expression and possibly mediate adipocyte and macrophage interaction.  相似文献   

10.
11.
The AHNAK nucleoprotein has been determined to exert an anti-obesity effect in adipose tissue and further inhibit adipogenic differentiation. In this study, we examined the role of AHNAK in regulating hepatic lipid metabolism to prevent diet-induced fatty liver. Ahnak KO mice have reportedly exhibited reduced fat accumulation in the liver and decreased serum triglyceride (TG) levels when provided with either a normal chow diet or a high-fat diet (HFD). Gene expression profiling was used to identify novel factors that could be modulated by genetic manipulation of the Ahnak gene. The results revealed that fibroblast growth factor 21 (FGF21) was markedly increased in the livers of Ahnak KO mice compared with WT mice fed a HFD. Ahnak knockdown in hepatocytes reportedly prevented excessive lipid accumulation induced by palmitate treatment and was associated with increased secretion of FGF21 and the expression of genes involved in fatty acid oxidation, which are primarily downstream of PPARα. These results indicate that pronounced obesity and hepatic steatosis are attenuated in HFD-fed Ahnak KO mice. This may be attributed, in part, to the induction of FGF21 and regulation of lipid metabolism, which are considered to be involved in increased fatty acid oxidation and reduced lipogenesis in the liver. These findings suggest that targeting AHNAK may have beneficial implications in preventing or treating hepatic steatosis.Subject terms: Mechanisms of disease, Metabolic syndrome  相似文献   

12.
Fruit peels, pericarps, or rinds are rich in phenolic/polyphenolic compounds with antioxidant properties and potentially beneficial effects against obesity and obesity-related non-communicable diseases. This study investigated the anti-obesity effects of matoa (Pometia pinnata) and salak (Salacca zalacca) fruit peel. Neither matoa peel powder (MPP) nor salak peel powder (SPP) affected the body weight, visceral fat weight, or serum glucose or lipid levels of Sprague–Dawley rats when included as 1% (w/w) of a high-fat diet (HFD). However, MPP significantly decreased the hepatic lipid level. MPP at a dose of 3% (w/w) of the HFD decreased body weight, visceral fat, and serum triglyceride levels as well as the hepatic lipid content. The inhibitory effect of MPP on hepatic lipid accumulation was not enhanced when its concentration was increased from 1% to 3% of the HFD. The anti-obesity effect of matoa was partly explained by the inhibitory effect of the matoa peel extract on fatty acid-induced secretion of ApoB-48 protein, a marker of intestinal chylomicrons, in differentiated Caco-2 cell monolayers. We identified hederagenin saponins that are abundant in MPP as potential anti-obesity substances. These results will contribute towards the development of functional foods with anti-obesity effects using the matoa fruit peel.  相似文献   

13.
To investigate the anti-obesity effects of escins extracted from the seeds of Aesculus turbinata BLUME, anti-obesity models in vitro and in vivo were employed. In a preliminary experiment, different solvent fractions of Aesculus turbinata BlUME as well as two isolated compounds were tested for their effects on pancreatic lipase (PL) in vitro. Subsequently, female ICR mice were fed a high fat diet with or without different concentrations of total escins for 11 weeks to examine body weight, parametrial adipose tissue weight, and hepatic triacylglycerol (TG) and total cholesterol (TC) contents. Plasma triacylglycerol levels (TG) after oral administration of lipid emulsions to rats were also investigated. The results showed that total escins (1 mg/ml) as well as two compounds isolated from total escins, namely escin Ib and IIa, showed inhibitory effects on PL activity. In vivo, total escins suppressed the increase in body weight, parametrial adipose tissue weight, TG content, and TC content in mice's liver; TG content in rat plasma was also reduced at 1, 2 and 3 h after oral administration of the lipid emulsion plus different concentrations of escins compared to those in the lipid emulsion groups. Meanwhile, mice fed a high fat diet plus 2% total escins for 3 d had an increased TG level in the feces compared to the HF group. The reason for this may be due to a delay in the intestinal absorption of dietary fat by inhibiting PL activity.  相似文献   

14.
A diet-induced non-alcoholic fatty liver disease (NAFLD) model causing obesity in rodents was used to examine whether sitagliptin and gliclazide therapies have similar protective effects on pathological liver change. Methods: Male mice were fed a high-fat diet (HFD) or standard chow (Chow) ad libitum for 25 weeks and randomly allocated to oral sitagliptin or gliclazide treatment for the final 10 weeks. Fasting blood glucose and circulating insulin were measured. Inflammatory and fibrotic liver markers were assessed by qPCR. The second messenger ERK and autophagy markers were examined by Western immunoblot. F4/80, collagens and CCN2 were assessed by immunohistochemistry (IHC). Results: At termination, HFD mice were obese, hyperinsulinemic and insulin-resistant but non-diabetic. The DPP4 inhibitor sitagliptin prevented intrahepatic induction of pro-fibrotic markers collagen-IV, collagen-VI, CCN2 and TGF-β1 and pro-inflammatory markers TNF-α and IL-1β more effectively than sulfonylurea gliclazide. By IHC, liver collagen-VI and CCN2 induction by HFD were inhibited only by sitagliptin. Sitagliptin had a greater ability than gliclazide to normalise ERK-protein liver dysregulation. Conclusion: These data indicate that sitagliptin, compared with gliclazide, exhibits greater inhibition of pro-fibrotic and pro-inflammatory changes in an HFD-induced NAFLD model. Sitagliptin therapy, even in the absence of diabetes, may have specific benefits in diet-induced NAFLD.  相似文献   

15.
In our previous study, a derivative of tiliroside, 3-O-[(E)-4-(4-ethoxyphenyl)-2-oxobut-3-en-1-yl]kaempferol (Fla-OEt) significantly enhanced glucose consumption in insulin resistant HepG2 cells. This article deals with the antihyperglycemic and antihyperlipidemic effects of Fla-OEt in diet-induced obesity (DIO) mice. Daily administration of Fla-OEt significantly decreased oral glucose tolerance test, intraperitoneal insulin tolerance test and serum lipids. Hyperinsulinemic–euglycemic clamp and the ratio of high-density-lipoprotein/low-density-lipoprotein with Fla-OEt treatment were increased comparing with high-fat diet (HFD) group, so lipid metabolism was improved. Histopathology examination showed that the Fla-OEt restored the damage of adipose tissues and liver in DIO mice. Moreover, compared with HFD group, Fla-OEt treatment significantly increased the phosphorylation of AMPK and ACC in adiposity tissues, liver, and muscles. The mechanism of its action might be the activation of AMPK pathway. It appears that Fla-OEt is worth further study for development as a lead compound for a potential antidiabetic agent.  相似文献   

16.
Obesity is now recognized as a disease. This study revealed a novel role for pyruvate dehydrogenase kinase (PDK) in diet-induced hypertrophic obesity. Mice with global or adipose tissue-specific PDK2 deficiency were protected against diet-induced obesity. The weight of adipose tissues and the size of adipocytes were reduced. Adipocyte-specific PDK2 deficiency slightly increased insulin sensitivity in HFD-fed mice. In studies with 3T3-L1 preadipocytes, PDK2 and PDK1 expression was strongly increased during adipogenesis. Evidence was found for epigenetic induction of both PDK1 and PDK2. Gain- and loss-of-function studies with 3T3-L1 cells revealed a critical role for PDK1/2 in adipocyte differentiation and lipid accumulation. PDK1/2 induction during differentiation was also accompanied by increased expression of hypoxia-inducible factor-1α (HIF1α) and enhanced lactate production, both of which were absent in the context of PDK1/2 deficiency. Exogenous lactate supplementation increased the stability of HIF1α and promoted adipogenesis. PDK1/2 overexpression-mediated adipogenesis was abolished by HIF1α inhibition, suggesting a role for the PDK-lactate-HIF1α axis during adipogenesis. In human adipose tissue, the expression of PDK1/2 was positively correlated with that of the adipogenic marker PPARγ and inversely correlated with obesity. Similarly, PDK1/2 expression in mouse adipose tissue was decreased by chronic high-fat diet feeding. We conclude that PDK1 and 2 are novel regulators of adipogenesis that play critical roles in obesity.Subject terms: Mechanisms of disease, Obesity  相似文献   

17.
Alcohol is metabolized in liver. Chronic alcohol abuse results in alcohol-induced fatty liver and liver injury. Red quinoa (Chenopodium formosanum) was a traditional staple food for Taiwanese aborigines. Red quinoa bran (RQB) included strong anti-oxidative and anti-inflammatory polyphenolic compounds, but it was usually regarded as the agricultural waste. Therefore, this study is to investigate the effect of water and ethanol extraction products of RQB on the prevention of liquid alcoholic diet-induced acute liver injury in mice. The mice were given whole grain powder of red quinoa (RQ-P), RQB ethanol extract (RQB-E), RQB water extract (RQB-W), and rutin orally for 6 weeks, respectively. The results indicated that RQB-E, RQB-W, and rutin decreased alcoholic diet-induced activities of aspartate aminotransferase and alanine aminotransferase, and the levels of serum triglyceride, total cholesterol, and hepatic triglyceride. Hematoxylin and eosin staining of liver tissues showed that RQB-E and RQB-W reduced lipid droplet accumulation and liver injury. However, ethanol extraction process can gain high rutin and antioxidative agents contents from red quinoa, that showed strong effects in preventing alcoholic fatty liver disease and liver injury via increasing superoxide dismutase/catalase antioxidative system and repressing the expressions of fatty acid synthesis enzyme acetyl-CoA carboxylase.  相似文献   

18.
Ixeris chinensis (Thunb.) Nakai (IC) is a folk medicinal herb used in Mongolian medical clinics for the treatment of hepatitis and fatty liver diseases even though its pharmacological mechanism has not been well characterized. This study investigated the hepatoprotective mechanism of IC on mice with nonalcoholic fatty liver disease (NAFLD) by integrating gut microbiota and metabolomic analysis. A high-fat diet (HFD) was used to develop nonalcoholic fatty liver disease, after which the mice were treated with oral IC (0.5, 1.5 and 3.0 g/kg) for 10 weeks. HFD induced NAFLD and the therapeutic effects were characterized by pathological and histological evaluations, and the serum indicators were analyzed by ELISA. The gut microbial and metabolite profiles were studied by 16S rRNA sequencing and untargeted metabolomic analysis, respectively. The results showed that the administration of IC resulted in significant decreases in body weight; liver index; serum biomarkers such as ALT, TG, and LDL-C; and the liver inflammatory factors IL-1β, IL-6, and TNF-α. The 16S rRNA sequencing results showed that administration of IC extract altered both the composition and abundance of the gut microbiota. Untargeted metabolomic analysis of liver samples detected a total of 212 metabolites, of which 128 were differentially expressed between the HFD and IC group. IC was found to significantly alter the levels of metabolites such as L-glutamic acid, pyridoxal, ornithine, L-aspartic acid, D-proline, and N4-acetylaminobutanal, which are involved in the regulation of glutamine and glutamate, Vitamin B6 metabolism, and arginine and proline metabolic pathways. Correlation analysis indicated that the effects of the IC extract on metabolites were associated with alterations in the abundance of Akkermansiaceae, Lachnospiraceae, and Muribaculaceae. Our study revealed that IC has a potential hepatoprotective effect in NAFLD and that its function might be linked to improvements in the composition of gut microbiota and their metabolites.  相似文献   

19.
Non-alcoholic fatty liver disease (NAFLD) embraces several forms of liver disorders involving fat disposition in hepatocytes ranging from simple steatosis to the severe stage, namely, non-alcoholic steatohepatitis (NASH). Recently, several experimental in vivo animal models for NAFLD/NASH have been established. However, no reproducible experimental animal model displays the full spectrum of pathophysiological, histological, molecular, and clinical features associated with human NAFLD/NASH progression. Although methionine-choline-deficient (MCD) diet and high-fat diet (HFD) models can mimic histological and metabolic abnormalities of human disease, respectively, the molecular signaling pathways are extremely important for understanding the pathogenesis of the disease. This review aimed to assess the differences in gene expression patterns and NAFLD/NASH progression pathways among the most common dietary animal models, i.e., HFD- and MCD diet-fed animals. Studies showed that the HFD and MCD diet could induce either up- or downregulation of the expression of genes and proteins that are involved in lipid metabolism, inflammation, oxidative stress, and fibrogenesis pathways. Interestingly, the MCD diet model could spontaneously develop liver fibrosis within two to four weeks and has significant effects on the expression of genes that encode proteins and enzymes involved in the liver fibrogenesis pathway. However, such effects in the HFD model were found to occur after 24 weeks with insulin resistance but appear to cause less severe fibrosis. In conclusion, assessing the abnormal gene expression patterns caused by different diet types provides valuable information regarding the molecular mechanisms of NAFLD/NASH and predicts the clinical progression of the disease. However, expression profiling studies concerning genetic variants involved in the development and progression of NAFLD/NASH should be conducted.  相似文献   

20.
Amber—the fossilized resin of trees—is rich in terpenoids and rosin acids. The physiological effects, such as antipyretic, sedative, and anti-inflammatory, were used in traditional medicine. This study aims to clarify the physiological effects of amber extract on lipid metabolism in mouse 3T3-L1 cells. Mature adipocytes are used to evaluate the effect of amber extract on lipolysis by measuring the triglyceride content, glucose uptake, glycerol release, and lipolysis-related gene expression. Our results show that the amount of triacylglycerol, which is stored in lipid droplets in mature adipocytes, decreases following 96 h of treatment with different concentrations of amber extract. Amber extract treatment also decreases glucose uptake and increases the release of glycerol from the cells. Moreover, amber extract increases the expression of lipolysis-related genes encoding perilipin and hormone-sensitive lipase (HSL) and promotes the activity of HSL (by increasing HSL phosphorylation). Amber extract treatment also regulates the expression of other adipocytokines in mature adipocytes, such as adiponectin and leptin. Overall, our results indicate that amber extract increases the expression of lipolysis-related genes to induce lipolysis in 3T3-L1 cells, highlighting its potential for treating various obesity-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号