首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work involves a comprehensive chemical composition analysis of leaf and cone samples of Lithuanian hop varieties. This study aimed to determine the chemometric properties of the leaves and cones of five Lithuanian hop varieties. Determined properties were the following: (a) xanthohumol content, (b) phenolic compounds, (c) flavonoids, (d) radical scavenging activity, and (e) the qualitative composition of volatile compounds. The total content of phenolic compounds in aqueous 75% methanolic extracts varied between 31.4–78.2 mg of rutin equivalents (RE)/g, and the concentration of flavonoids was between 11.0–23.3 mg RE/g. Radical scavenging activity varied between 34.4–87.2 mg RE/g. A QUENCHER analysis procedure showed 91.7–168.5 mg RE/g of the total phenolic compound content, 12.7–21.4 mg RE/g of flavonoids, and 48.4–121.0 mg RE/g of radical scavenging activity. ‘Fredos taurieji’ and ‘Fredos derlingieji’ varieties have shown maximum values of phenolic compounds and radical scavenging activity both in leaf and cone suspensions. These varieties accumulated a higher amount of xanthohumol in leaves. The concentration of xanthohumol in the samples varied between 0.0014–0.2136% of dry mass, with the highest concentration in the cones of ‘Kauno gražieji’. We identified 19 volatile compounds in leaves, and in cones, we identified 32. In both of them, α-humulene and β caryophyllene dominated. ‘Raudoniai’ leaves were exceptional in their aroma due to dominating compound nagina ketone (Kovats index 1306). The QUENCHER procedure has shown a great potential for the unextractable residue of hop raw material. Further investigation and valorization of different hop biomass components, not only cones, are essential.  相似文献   

2.
Phenolic compounds in the fruit of American cranberry (Vaccinium macrocarpon Aiton) determine the antioxidant, anti-inflammatory, anticancer, and other biological effects. The berries are used in the production of medicinal preparations and food supplements, which highlights the importance of qualitative and quantitative analysis of phenolic compounds in cranberry fruit raw material. The aim of our study was to develop and validate an efficient, cost-effective, reproducible, and fast UPLC-DAD methodology for the evaluation of the qualitative and quantitative composition of phenolic compounds in raw material and preparations of American cranberry fruit. During the development of the methodology, chlorogenic acid and the following flavonols were identified in cranberry fruit samples: myricetin-3-galactoside, quercetin-3-galactoside, quercetin-3-glucoside, quercetin-3-α-L-arabinopyranoside, quercetin-3-α-L-arabinofuranoside, quercetin-3-rhamnoside, myricetin, and quercetin. The developed and optimized UPLC-DAD methodology was validated according to the guidelines of the International Council for Harmonization (ICH), evaluating the following parameters: range, specificity, linearity (R2 > 0.999), precision (%RSD < 2%), LOD (0.38–1.01 µg/mL), LOQ (0.54–3.06 µg/mL), and recovery (80–110%). The developed methodology was applied to evaluate the qualitative and quantitative composition of phenolic compounds in fruit samples of cranberry cultivars ‘Baifay’, ‘Bergman’, ‘Prolific’, and ‘Searles’, as well as ‘Bain-MC’ and ‘BL-12′ clones. In the tested samples, the majority (about 70%) of the identified flavonols were quercetin derivatives. The greatest amount of quercetin-3-galactoside (1035.35 ± 4.26 µg/g DW) was found in fruit samples of the ‘Searles’ cultivar, and the greatest amount of myricetin-3-galactoside (940.06 ± 24.91 µg/g DW) was detected in fruit samples of the ‘Woolman’ cultivar.  相似文献   

3.
Sea buckthorn (Hippophae rhamnoides L. (HR)) leaf powders are the underutilized, promising resource of valuable compounds. Genotype and processing methods are key factors in the preparation of homogenous, stable, and quantified ingredients. The aim of this study was to evaluate the phenolic, triterpenic, antioxidant profiles, carotenoid and chlorophyll content, and chromatic characteristics of convection-dried and freeze-dried HR leaf powders obtained from ten different female cultivars, namely ‘Avgustinka’, ‘Botaniceskaja Liubitelskaja’, ‘Botaniceskaja’, ‘Hibrid Percika’, ‘Julia’, ‘Nivelena’, ‘Otradnaja’, ‘Podarok Sadu’, ‘Trofimovskaja’, and ‘Vorobjovskaja’. The chromatic characteristics were determined using the CIELAB scale. The phytochemical profiles were determined using HPLC-PDA (high performance liquid chromatography with photodiode array detector) analysis; spectrophotometric assays and antioxidant activities were investigated using ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and FRAP (ferric ion reducing antioxidant power) assays. The sea buckthorn leaf powders had a yellowish-green appearance. The drying mode had a significant impact on the total antioxidant activity, chlorophyll content, and chromatic characteristics of the samples; the freeze-dried samples were superior in antioxidant activity, chlorophyll, carotenoid content, and chromatic profile, compared to convection-dried leaf powder samples. The determined triterpenic and phenolic profiles strongly depend on the cultivar, and the drying technique had no impact on qualitative and quantitative composition. Catechin, epigallocatechin, procyanidin B3, ursolic acid, α-amyrin, and β-sitosterol could be used as quantitative markers in the phenolic and triterpenic profiles. The cultivars ‘Avgustinka’, ‘Nivelena’, and ‘Botaniceskaja’ were superior to other tested cultivars, with the phytochemical composition and antioxidant activity.  相似文献   

4.
Over the past decade, there has been growing interest in polyphenols’ research since these compounds, as antioxidants, have several health benefits, such as preventing neurodegenerative diseases, inflammation, cancer, cardiovascular diseases, and type 2 diabetes. This study implements an analytical method to assess the total phenolic content (TPC) in essential oils using Folin–Ciocalteu’s phenol reagent and quantifies the individual phenolic compounds by liquid chromatography. Thus, the research design and methodology included: (1) extraction of essential oil from dried thyme leaves by hydrodistillation; (2) spectrophotometric measurement of TPC by Folin–Ciocalteu method; and (3) identification and quantification of individual phenolic compounds by high-performance liquid chromatography-diode array detection/electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS). Results revealed a TPC of 22.62 ± 0.482 mg GAE/100 µL and a polyphenolic profile characterized by phenolic acids (52.1%), flavonoids (16.1%), and other polyphenols (31.8%). Thymol, salvianolic acid A, and rosmarinic acid were the major compounds of thyme essential oil. The proposed analytical procedure has an acceptable level of repeatability, reproducibility, linearity, LOD (limit of detection), and LOQ (limit of quantification).  相似文献   

5.
Bactrocera oleae, the olive fruit fly, is one of the most important pests affecting the olive fruit, causing serious quantitative and qualitative damage to olive oil production. In this study, the changes induced by B. oleae infestation in the biosynthesis of volatile and phenolic compounds in olive (cvs. Picual, Manzanilla, and Hojiblanca) have been analyzed. Despite cultivar differences, the oils obtained from infested fruits showed a significant increase in the content of certain volatile compounds such as (E)-hex-2-enal, ethanol, ethyl acetate, and β-ocimene and a drastic decrease of the phenolic contents. The impact of those changes on the inferred quality of the oils has been studied. In parallel, the changes induced by the attack of the olive fly on the expression of some key genes in the biosynthesis of volatile and phenolic compounds, such as lipoxygenase, β-glucosidase, and polyphenol oxidase, have been analyzed. The strong induction of a new olive polyphenol oxidase gene (OePPO2) explains the reduction of phenolic content in the oils obtained from infested fruits and suggest the existence of a PPO-mediated oxidative defense system in olives.  相似文献   

6.
Warionia saharae Benth. & Coss. (Asteraceae) is an endemic species of North Africa naturally grown in the southwest of the Algerian Sahara. In the present study, this species’ hydromethanolic leaf extract was investigated for its phenolic profile characterized by ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MS). Additionally, the chemical composition of W. saharae was analyzed by gas chromatography–mass spectrometry, and its antioxidant potential was assessed through five in vitro tests: DPPH scavenging activity, ABTS●+ scavenging assay, galvinoxyl scavenging activity, ferric reducing power (FRP), and cupric reducing antioxidant capacity. The UHPLC-DAD-ESI/MS analysis allowed the detection and quantification of 22 compounds, with taxifolin as the dominant compound. The GC–MS analysis allowed the identification of 37 compounds, and the antioxidant activity data indicate that W. saharae extract has a very high capacity to capture radicals due to its richness in compounds with antioxidant capacity. The extract also showed potent α-glucosidase inhibition as well as a good anti-inflammatory activity. However, weak anti-α-amylase and anticholinesterase activities were recorded. Moreover, an in silico docking study was performed to highlight possible interactions between three significant compounds identified in W. saharae extract and α-glucosidase enzyme.  相似文献   

7.
Considering medicinal plants as an inexhaustible source of active ingredients that may be easily isolated using simple and inexpensive techniques, phytotherapy is becoming increasingly popular. Various experimental approaches and analytical methods have been used to demonstrate that the genus Calendula (Asteraceae) has a particular richness in active ingredients, especially phenolic compounds, which justifies the growing interest in scientific studies on this genus’ species. From a chemical and biological viewpoint, Calendula aegyptiaca is a little-studied plant. For the first time, high-performance liquid chromatography combined with negative electrospray ionization mass spectrometry (HPLC-HESI-MS) was used to analyze methanolic extracts of Calendula aegyptiaca (C. aegyptiaca) fruits. Thirty-five molecules were identified. Flavonoids (47.87%), phenolic acids (5.18%), and saponins (6.47%) formed the majority of these chemicals. Rutin, caffeic acid hexoside, and Soyasaponin βg’ were the most abundant molecules in the fruit methanolic extract, accounting for 17.49% of total flavonoids, 2.32 % of total phenolic acids, and 0.95% of total saponins, respectively. The antioxidant activity of the fruit extracts of C. aegyptiaca was investigated using FRAP, TAC, and DPPH as well as flavonoids and total phenols content. Because the phenolic components were more extractable using polar solvents, the antioxidant activity of the methanolic extract was found to be higher than that of the dichloromethane and hexane extracts. The IC50 value for DPPH of methanolic extract was found to be 0.041 mg·mL−1. Our findings showed that C. aegyptiaca is an important source of physiologically active compounds.  相似文献   

8.
9.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

10.
Alzheimer’s disease (AD) is a severe neurodegenerative disorder of different brain regions accompanied by distresses and affecting more than 25 million people in the world. This progressive brain deterioration affects the central nervous system and has negative impacts on a patient’s daily activities such as memory impairment. The most important challenge concerning AD is the development of new drugs for long-term treatment or prevention, with lesser side effects and greater efficiency as cholinesterases inhibitors and the ability to remove amyloid-beta(Aβ) deposits and other related AD neuropathologies. Natural sources provide promising alternatives to synthetic cholinesterase inhibitors and many have been reported for alkaloids while neglecting other classes with potential cholinesterase inhibition. This review summarizes information about the therapeutic potential of small natural molecules from medicinal herbs, belonging to terpenoids, coumarins, and phenolic compounds, and others, which have gained special attention due to their specific modes of action and their advantages of low toxicity and high efficiency in the treatment of AD. Some show superior drug-like features in comparison to synthetic cholinesterase inhibitors. We expect that the listed phytoconstituents in this review will serve as promising tools and chemical scaffolds for the discovery of new potent therapeutic leads for the amelioration and treatment of Alzheimer’s disease.  相似文献   

11.
Apples are an important source of biologically active compounds. Consequently, we decided to model hard gelatin capsules with lyophilized apple powder by using different excipients and to evaluate the release kinetics of phenolic compounds. The apple slices of “Ligol” cultivar were immediately frozen in a freezer (at −35°C) with air circulation and were lyophilized with a sublimator at the pressure of 0.01 mbar (condenser temperature, −85°C). Lyophilized apple powder was used as an active substance filled into hard gelatin capsules. We conducted capsule disintegration and dissolution tests to evaluate the quality of apple lyophilizate-containing capsules of different encapsulating content. Individual phenolic compounds can be arranged in the following descending order according to the amount released from the capsules of different compositions: chlorogenic acid > rutin > avicularin > hyperoside > phloridzin > quercitrin > (−)-epicatechin > isoquercitrin. Chlorogenic acid was the compound that was released in the highest amounts from capsules of different encapsulating content: its released amounts ranged from 68.4 to 640.3 μg/mL. According to the obtained data, when hypromellose content ranged from 29% to 41% of the capsule mass, the capsules disintegrated within less than 30 min, and such amounts of hypromellose did not prolong the release of phenolic compounds. Based on the results of the dissolution test, the capsules can be classified as fast-dissolving preparations, as more than 85% of the active substances were released within 30 min.  相似文献   

12.
Aristotelia chilensis is a plant rich in phenolics and other bioactive compounds. Their leaves are discarded as waste in the maqui berry industry. A new application of these wastes is intended by the recovery of bioactive compounds using pressurized hot water extraction with conventional or microwave heating. Both technologies have been selected for their green character regarding the type of solvent and the high efficiency in shorter operation times. Extractions were performed in the temperature range 140–200 °C with a solid/liquid ratio of 1:15 (w:w). The extracts’ total phenolic content, antioxidant capacity, and saccharides content obtained with both heating methods were measured. Additionally, the thermo-rheological properties of the gelling matrix enriched with these extracts were analyzed. Optimum conditions for lyophilized extracts were found with conventional heating, at 140 °C and 20 min extraction; 250.0 mg GAE/g dry extract and 1321.5 mg Trolox/g dry extract. Close to optimum performance was achieved with microwave heating in a fraction of the time (5 min) at 160 °C (extraction), yielding extracts with 231.9 mg GAE/g dry extract of total phenolics and antiradical capacity equivalent to 1176.3 mg Trolox/g dry extract. Slightly higher antioxidant values were identified for spray-dried extracts (between 5% for phenolic content and 2.5% for antioxidant capacity). The extracts obtained with both heating methods at 200 °C contained more than 20% oligosaccharides, primarily glucose. All the formulated gelling matrices enriched with the obtained extracts displayed intermediate gel strength properties. The tested technologies efficiently recovered highly active antioxidant extracts, rich in polyphenolics, and valuable for formulating gelling matrices with potential applicability in foods and other products.  相似文献   

13.
As the interest in heirloom cultivars of apple trees, their fruit, and processed products is growing worldwide, studies of the qualitative and quantitative composition of biological compounds are important for the evaluation of the quality and nutritional properties of the apples. Studies on the variations in the chemical composition of phenolic compounds characterized by a versatile biological effect are important when researching the genetic heritage of the heirloom cultivars in order to increase the cultivation of such cultivars in orchards. A variation in the qualitative and quantitative composition of phenolic compounds was found in apple samples of cultivars included in the Lithuanian collection of genetic resources. By the high-performance liquid chromatography (HPLC) method flavan-3-ols (procyanidin B1, procyanidin B2, procyanidin C2, (+)-catechin and (−)-epicatechin), flavonols (rutin, hyperoside, quercitrin, isoquercitrin, reynoutrin and avicularin), chlorogenic acids and phloridzin were identified and quantified in fruit samples of heirloom apple cultivars grown in Lithuania. The highest sum of the identified phenolic compounds (3.82 ± 0.53 mg/g) was found in apple fruit samples of the ‘Koštelė’ cultivar  相似文献   

14.
One of the effective treatments for diabetes is to reduce and delay the absorption of glucose by inhibition of α-amylase and α-glucosidase in the digestive tract. Currently, there is a great interest in natural inhibitors from various part of plants. In the present study, the phenolic compounds composition of V. opulus bark and flower, and their inhibitory effects on in vitro potato starch digestion as well as on α-amylase and α-glucosidase, have been studied. Bark and flower phenolic extracts reduced the amount of glucose released from potato starch during tree-stage simulated digestion, with IC50 value equal to 87.77 µg/mL and 148.87 µg/mL, respectively. Phenolic bark extract showed 34.9% and 38.4% more potent inhibitory activity against α-amylase and α-glucosidase, respectively, but the activity of plant extracts was lower than that of acarbose. Chlorogenic acid (27.26% of total phenolics) and (+)-catechin (30.48% of total phenolics) were the most prominent phenolics in the flower and bark extracts, respectively. Procyanidins may be responsible for the strongest V. opulus bark inhibitory activity against α-amylase, while (+)-catechin relative to α-glucosidase. This preliminary study provides the basis of further examination of the suitability of V. opulus bark compounds as components of nutraceuticals and functional foods with antidiabetic activity.  相似文献   

15.
Phenolic compounds (PCs) present in foods are associated with a decreased risk of developing inflammatory diseases. The aim of this study was to extract and characterize PCs from craft beer powder and evaluate their potential benefits in an experimental model of inflammatory bowel disease (IBD). PCs were extracted and quantified from pure beer samples. BALB/c mice received either the beer phenolic extract (BPE) or beer powder fortified with phenolic extract (BPFPE) of PCs daily for 20 days by gavage. Colon samples were collected for histopathological and immunohistochemical analyses. Dextran sodium sulfate (DSS)-induced mice lost more weight, had reduced colon length, and developed more inflammatory changes compared with DSS-induced mice treated with either BPE or BPFPE. In addition, in DSS-induced mice, the densities of CD4- and CD11b-positive cells, apoptotic rates, and activation of NF-κB and p-ERK1/2 MAPK intracellular signaling pathways were higher in those treated with BPE and BPFPE than in those not treated. Pretreatment with the phenolic extract and BPFPE remarkably attenuated DSS-induced colitis. The protective effect of PCs supports further investigation and development of therapies for human IBD.  相似文献   

16.
There are a significant number of analytical methodologies employing different techniques to determine phenolic compounds in beverages. However, these methods employ long sample preparation processes and great time consumption. The aim of this paper was the development of a simple method for evaluating the phenolic compounds’ presence in Brazilian craft beers without a previous extraction step. Catechin, caffeic acid, epicatechin, p-coumaric acid, hydrated rutin, trans-ferulic acid, quercetin, kaempferol, and formononetin were analyzed in fifteen different craft beers. The method showed good linearity (R2 ≥ 0.9966). The limit of detection ranged from 0.08 to 0.83 mg L−1, and limits of quantification were between 0.27 and 2.78 mg L−1. The method showed a satisfactory precision (RSD ≤ 16.2%). A good accuracy was obtained by the proposed method for all phenolic compounds in craft beer (68.6% ˂ accuracy ˂ 112%). Catechin showed higher concentrations (up to 124.8 mg L−1) in the samples, followed by epicatechin (up to 51.1 mg L−1) and caffeic acid (up to 8.13 mg L−1). Rutin and formononetin were observed in all analyzed samples (0.52 mg L−1 to 2.40 mg L−1), and kaempferol was less present in the samples. The presence of plant origin products was determinant for the occurrence of the highest concentrations of phenolic compounds in Brazilian craft beers.  相似文献   

17.
In this study, phenolic compounds from an aqueous protein by-product from rapeseed meal (RSM) were identified by HPLC-DAD and HPLC-ESI-MS, including sinapine, sinapic acid, sinapoyl glucose, and 1,2-di-sinapoyl gentibiose. The main phenolic compound in this by-product was sinapine. We also performed acid hydrolysis to convert sinapine, and sinapic acid derivatives present in the permeate, to sinapic acid. The adsorption of phenolic compounds was investigated using five macroporous resins, including XAD4, XAD7, XAD16, XAD1180, and HP20. Among them, XAD16 showed the highest total phenolic contents adsorption capacities. The adsorption behavior of phenolic compounds was described by pseudo-second-order and Langmuir models. Moreover, thermodynamics tests demonstrated that the adsorption process of phenolic compounds was exothermic and spontaneous. The highest desorption ratio was obtained with 30% (v/v) and 70% (v/v) ethanol for sinapine and sinapic acid, respectively, with a desorption ratio of 63.19 ± 0.03% and 94.68 ± 0.013%. DPPH and ABTS tests revealed that the antioxidant activity of the hydrolyzed fraction was higher than the non-hydrolyzed fraction and higher than the one of vitamin C. Antioxidant tests demonstrated that these phenolic compounds could be used as natural antioxidants, which can be applied in the food industry.  相似文献   

18.
气相色谱-质谱法分析啤酒中酒花香气成分   总被引:1,自引:0,他引:1  
利用顶空固相微萃取-气相色谱质谱技术(HS-SPME/GC-MS)建立了定量分析啤酒中19种源自酒花的微量香气成分的方法。研究了不同萃取头、萃取时间、萃取温度对萃取效果的影响,最终确定HS-SPME最佳萃取条件为采用PDMS萃取头对啤酒样品在50℃下萃取60 min。在最佳萃取条件下,采用啤酒为基体以减少基体干扰,建立标准曲线,随后在SIM模式下以萜品烯-4-醇为内标定量测定了啤酒中酒花香气物质的含量。19种物质的回收率在81.2%~116.8%之间,相对标准偏差(RSD)低于9.8%,在5个加标浓度下,R2大于0.99。相比于传统方法,本方法所需样品量少、灵敏度高、操作过程简便,能准确的检测出啤酒中酒花香气物质的含量。  相似文献   

19.
Red fruits and their juices are rich sources of polyphenols, especially anthocyanins. Some studies have shown that such polyphenols can inhibit enzymes of the carbohydrate metabolism, such as α-amylase and α-glucosidase, that indirectly regulate blood sugar levels. The presented study examined the in vitro inhibitory activity against α-amylase and α-glucosidase of various phenolic extracts prepared from direct juices, concentrates, and purees of nine different berries which differ in their anthocyanin and copigment profile. Generally, the extracts with the highest phenolic content—aronia (67.7 ± 3.2 g GAE/100 g; cyanidin 3-galactoside; chlorogenic acid), pomegranate (65.7 ± 7.9 g GAE/100 g; cyanidin 3,5-diglucoside; punicalin), and red grape (59.6 ± 2.5 g GAE/100 g; malvidin 3-glucoside; quercetin 3-glucuronide)—showed also one of the highest inhibitory activities against α-amylase (326.9 ± 75.8 μg/mL; 789.7 ± 220.9 μg/mL; 646.1 ± 81.8 μg/mL) and α-glucosidase (115.6 ± 32.5 μg/mL; 127.8 ± 20.1 μg/mL; 160.6 ± 68.4 μg/mL) and, partially, were even more potent inhibitors than acarbose (441 ± 30 μg/mL; 1439 ± 85 μg/mL). Additionally, the investigation of single anthocyanins and glycosylated flavonoids demonstrated a structure- and size-dependent inhibitory activity. In the future in vivo studies are envisaged.  相似文献   

20.
During kiwiberry production, different by-products are generated, including leaves that are removed to increase the fruit’s solar exposure. The aim of this work was to extract bioactive compounds from kiwiberry leaf by employing microwave-assisted extraction (MAE). Compatible food solvents (water and ethanol) were employed. The alcoholic extract contained the highest phenolic and flavonoid contents (629.48 mg of gallic acid equivalents (GAE) per gram of plant material on dry weight (dw) (GAE/g dw) and 136.81 mg of catechin equivalents per gram of plant material on dw (CAE/g dw), respectively). Oppositely, the hydroalcoholic extract achieved the highest antioxidant activity and scavenging activity against reactive oxygen and nitrogen species (IC50 = 29.10 μg/mL for O2•−, IC50 = 1.87 μg/mL for HOCl and IC50 = 1.18 μg/mL for NO). The phenolic profile showed the presence of caffeoylquinic acids, proanthocyanidin, and quercetin in all samples. However, caffeoylquinic acids and quercetin were detected in higher amounts in the alcoholic extract, while proanthocyanidins were prevalent in the hydroalcoholic extract. No adverse effects were observed on Caco-2 viability, while the highest concentration (1000 µg/mL) of hydroalcoholic and alcoholic extracts conducted to a decrease of HT29-MTX viability. These results highlight the MAE potentialities to extract bioactive compounds from kiwiberry leaf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号