首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current drug discovery involves finding leading drug candidates for further development. New scientific approaches include molecular docking, ADMET studies, and molecular dynamic simulation to determine targets and lead compounds. Hepatitis B is a disease of concern that is a life-threatening liver infection. The protein considered for the study was HBx. The hepatitis B X-interacting protein crystal structure was obtained from the PDB database (PDB ID-3MSH). Twenty ligands were chosen from the PubChem database for further in silico studies. The present study focused on in silico molecular docking studies using iGEMDOCK. The triethylene glycol monoethyl ether derivative showed an optimum binding affinity with the molecular target HBx, with a high negative affinity binding energy of −59.02 kcal/mol. Lipinski’s rule of five, Veber, and Ghose were followed in subsequent ADMET studies. Molecular dynamic simulation was performed to confirm the docking studies and to analyze the stability of the structure. In these respects, the triethylene glycol monoethyl ether derivative may be a promising molecule to prepare future hepatitis B drug candidates. Substantial research effort to find a promising drug for hepatitis B is warranted in the future.  相似文献   

2.
Piper betle L. is widely distributed and commonly used medicinally important herb. It can also be used as a medication for type 2 diabetes patients. In this study, compounds of P. betle were screened to investigate the inhibitory action of alpha-amylase and alpha-glucosidase against type 2 diabetes through molecular docking, molecular dynamics simulation, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. The molecule apigenin-7-O-glucoside showed the highest binding affinity among 123 (one hundred twenty-three) tested compounds. This compound simultaneously bound with the two-target proteins alpha-amylase and alpha-glucosidase, with high molecular mechanics-generalized born surface area (MM/GBSA) values (ΔG Bind = −45.02 kcal mol−1 for alpha-amylase and −38.288 for alpha-glucosidase) compared with control inhibitor acarbose, which had binding affinities of −36.796 kcal mol−1 for alpha-amylase and −29.622 kcal mol−1 for alpha-glucosidase. The apigenin-7-O-glucoside was revealed to be the most stable molecule with the highest binding free energy through molecular dynamics simulation, indicating that it could compete with the inhibitors’ native ligand. Based on ADMET analysis, this phytochemical exhibited a wide range of physicochemical, pharmacokinetic, and drug-like qualities and had no significant side effects, making them prospective drug candidates for type 2 diabetes. Additional in vitro, in vivo, and clinical investigations are needed to determine the precise efficacy of drugs.  相似文献   

3.
The α-D-glucopyranoside and its derivatives were as the cardinal investigation for developing an effective medication to treat the highest deadly white spot syndrome virus (WSSV) diseases in Shrimp. In our forthcoming work, both computational tools, such as molecular docking, quantum calculations, pharmaceutical kinetics, ADMET, and their molecular dynamics, as well as the experimental trial against WSSV, were executed to develop novel inhibitors. In the beginning, molecular docking was carried out to determine inhibitors of the four targeted proteins of WSSV (PDB ID: 2ED6, 2GJ2, 2GJI, and 2EDM), and to determine the binding energies and interactions of ligands and proteins after docking. The range of binding affinity was found to be between −5.40 and −7.00 kcal/mol for the protein 2DEM, from −5.10 to 6.90 kcal/mol for the protein 2GJ2, from −4.70 to −6.2 kcal/mol against 2GJI, and from −5.5 kcal/mol to −6.6 kcal/mol for the evolved protein 2ED6 whereas the L01 and L03 display the highest binding energy in the protein 2EDM. After that, the top-ranked compounds (L01, L02, L03, L04, and L05), based on their high binding energies, were tested for molecular dynamics (MD) simulations of 100 ns to verify the docking validation and stability of the docked complex by calculating the root mean square deviation (RMSD) and root mean square fluctuation (RMSF). The molecules with the highest binding energy were then picked and compared to the standard drugs that were been applied to fish experimentally to evaluate the treatment at various doses. Consequently, approximately 40–45% cure rate was obtained by applying the dose of oxytetracycline (OTC) 50% with vitamin C with the 10.0 g/kg feed for 10 days. These drugs (L09 to L12) have also been executed for molecular docking to compare with α-D-glucopyranoside and its derivatives (L01 to L08). Next, the evaluation of pharmacokinetic parameters, such as drug-likeness and Lipinski’s principles; absorption; distribution; metabolism; excretion; and toxicity (ADMET) factors, were employed gradually to further evaluate their suitability as inhibitors. It was discovered that all ligands (L01 to L12) were devoid of hepatotoxicity, and the AMES toxicity excluded L05. Additionally, all of the compounds convey a significant aqueous solubility and cannot permeate the blood-brain barrier. Moreover, quantum calculations based on density functional theory (DFT) provide the most solid evidence and testimony regarding their chemical stability, chemical reactivity, biological relevance, reactive nature and specific part of reactivity. The computational and virtual screenings for in silico study reveals that these chosen compounds (L01 to L08) have conducted the inhibitory effect to convey as a possible medication against the WSSV than existing drugs (L09, L10, L11 and L12) in the market. Next the drugs (L09, L10, L11 and L12) have been used in trials.  相似文献   

4.
Sofosbuvir is the first approved direct-acting antiviral (DAA) agent that inhibits the HCV NS5B polymerase, resulting in chain termination. The molecular models of the 2′-dihalo ribonucleotides used were based on experimental biological studies of HCV polymerase inhibitors. They were modeled within HCV GT1a and GT1b to understand the structure–activity relationship (SAR) and the binding interaction of the halogen atoms at the active site of NS5B polymerase using different computational approaches. The outputs of the molecular docking studies indicated the correct binding mode of the tested compounds against the active sites in target receptors, exhibiting good binding free energies. Interestingly, the change in the substitution at the ribose sugar was found to produce a mild effect on the binding mode. In detail, increasing the hydrophobicity of the substituted moieties resulted in a better binding affinity. Furthermore, in silico ADMET investigation implied the general drug likeness of the examined derivatives. Specifically, good oral absorptions, no BBB penetration, and no CYP4502D6 inhibitions were expected. Likely, the in silico toxicity studies against several animal models showed no carcinogenicity and high predicted TD50 values. The DFT studies exhibited a bioisosteric effect between the substituents at the 2′-position and the possible steric clash between 2′-substituted nucleoside analogs and the active site in the target enzyme. Finally, compound 6 was subjected to several molecular dynamics (MD) simulations and MM-PBSA studies to examine the protein-ligand dynamic and energetic stability.  相似文献   

5.
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the “COVID-19” disease that has been declared by WHO as a global emergency. The pandemic, which emerged in China and widespread all over the world, has no specific treatment till now. The reported antiviral activities of isoflavonoids encouraged us to find out its in silico anti-SARS-CoV-2 activity. In this work, molecular docking studies were carried out to investigate the interaction of fifty-nine isoflavonoids against hACE2 and viral Mpro. Several other in silico studies including physicochemical properties, ADMET and toxicity have been preceded. The results revealed that the examined isoflavonoids bound perfectly the hACE-2 with free binding energies ranging from −24.02 to −39.33 kcal mol−1, compared to the co-crystallized ligand (−21.39 kcal mol–1). Furthermore, such compounds bound the Mpro with unique binding modes showing free binding energies ranging from −32.19 to −50.79 kcal mol–1, comparing to the co-crystallized ligand (binding energy = −62.84 kcal mol–1). Compounds 33 and 56 showed the most acceptable affinities against hACE2. Compounds 30 and 53 showed the best docking results against Mpro. In silico ADMET studies suggest that most compounds possess drug-likeness properties.  相似文献   

6.
Glucokinase activators are considered as new therapeutic arsenals that bind to the allosteric activator sites of glucokinase enzymes, thereby maximizing its catalytic rate and increasing its affinity to glucose. This study was designed to identify potent glucokinase activators from prenylated flavonoids isolated from medicinal plants using molecular docking, molecular dynamics simulation, density functional theory, and ADMET analysis. Virtual screening was carried out on glucokinase enzymes using 221 naturally occurring prenylated flavonoids, followed by molecular dynamics simulation (100 ns), density functional theory (B3LYP model), and ADMET (admeSar 2 online server) studies. The result obtained from the virtual screening with the glucokinase revealed arcommunol B (−10.1 kcal/mol), kuwanon S (−9.6 kcal/mol), manuifolin H (−9.5 kcal/mol), and kuwanon F (−9.4 kcal/mol) as the top-ranked molecules. Additionally, the molecular dynamics simulation and MM/GBSA calculations showed that the hit molecules were stable at the active site of the glucokinase enzyme. Furthermore, the DFT and ADMET studies revealed the hit molecules as potential glucokinase activators and drug-like candidates. Our findings suggested further evaluation of the top-ranked prenylated flavonoids for their in vitro and in vivo glucokinase activating potentials.  相似文献   

7.
Background: Heterocyclic compounds and their fused analogs, which contain pharmacophore fragments such as pyridine, thiophene and pyrimidine rings, are of great interest due to their broad spectrum of biological activity. Chemical compounds containing two or more pharmacophore groups due to additional interactions with active receptor centers usually enhance biological activity and can even lead to a new type of activity. The search for new effective neurotropic drugs in the series of derivatives of heterocycles containing pharmacophore groups in organic, bioorganic and medical chemistry is a serious problem. Methods: Modern methodology of drugs involves synthesis, physicochemical study, molecular modeling and selection of active compounds through virtual screening and experimental evaluation of the biological activity of new chimeric compounds with pharmacophore fragments. For the synthesis of new compounds, classical organic methods were used and developed. For the evaluation of neurotropic activity of new synthesized compounds, some biological methods were used according to indicators characterizing anticonvulsant, sedative and antianxiety activity as well as side effects. For docking analysis, various soft ware packages and methods were used. Results: As a result of multistep reactions, 11 new, tri- and tetracyclic heterocyclic systems were obtained. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures as well as some psychotropic effects. The biological assays evidenced that nine of the eleven studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of the compounds is low, and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity, it was found that the selected compounds have an activating behavior and anxiolytic effects on the “open field” and “elevated plus maze” (EPM) models. The data obtained indicate the anxiolytic (antianxiety) activity of the derivatives of tricyclic thieno[2,3-b]pyridines and tetracyclic pyridothieno[3,2-d]pyrimidin-8-ones, especially pronounced in compounds 3b–f and 4e. The studied compounds increase the latent time of first immobilization on the “forced swimming” (FS) model and exhibit antidepressant effects; compounds 3e and 3f especially exhibit these effects, similarly to diazepam. Docking studies revealed that compounds 3c and 4b bound tightly in the active site of γ-aminobutyric acid type A (GABAA) receptors with a value of the scoring function that estimates free energy of binding (∆G) at −10.0 ± 5 kcal/mol. Compound 4e showed the best affinity ((∆G) at −11.0 ± 0.54 kcal/mol) and seems to be an inhibitor of serotonin (SERT) transporter. Compounds 3c–f and 4e practically bound with the groove of T4L of 5HT_1A and blocked it completely, while the best affinity observed was in compound 3f ((∆G) at −9.3 ± 0.46 kcal/mol). Conclusions: The selected compounds have an anticonvulsant, activating behavior and anxiolytic effects and at the same time exhibit antidepressant effects.  相似文献   

8.
Compounds derived from plants have several anticancer properties. In the current study, one guaiane-type sesquiterpene dimer, vieloplain F, isolated from Xylopia vielana species, was tested against B-Raf kinase protein (PDB: 3OG7), a potent target for melanoma. A comprehensive in silico analysis was conducted in this research to understand the pharmacological properties of a compound encompassing absorption, distribution, metabolism, excretion, and toxicity (ADMET), bioactivity score predictions, and molecular docking. During ADMET estimations, the FDA-approved medicine vemurafenib was hepatotoxic, cytochrome-inhibiting, and non-cardiotoxic compared to the vieloplain F. The bioactivity scores of vieloplain F were active for nuclear receptor ligand and enzyme inhibitor. During molecular docking experiments, the compound vieloplain F has displayed a higher binding potential with −11.8 kcal/mol energy than control vemurafenib −10.2 kcal/mol. It was shown that intermolecular interaction with the B-Raf complex and the enzyme’s active gorge through hydrogen bonding and hydrophobic contacts was very accurate for the compound vieloplain F, which was then examined for MD simulations. In addition, simulations using MM-GBSA showed that vieloplain F had the greatest propensity to bind to active site residues. The vieloplain F has predominantly represented a more robust profile compared to control vemurafenib, and these results opened the road for vieloplain F for its utilization as a plausible anti-melanoma agent and anticancer drug in the next era.  相似文献   

9.
A new N,N′-disubstituted piperazine conjugated with 1,3,4-thiadiazole and 1,2,4-triazole was prepared and the chemical structures were identified by IR, NMR and elemental analysis. All the prepared compounds were tested for their antimicrobial activity. The antimicrobial results indicated that the tested compounds showed significant antibacterial activity against gram-negative strains, especially E. coli, relative to gram-positive bacteria. Docking analysis was performed to support the biological results; binding modes with the active site of enoyl reductase amino acids from E. coli showed very good scores, ranging from −6.1090 to −9.6184 kcal/mol. Correlation analysis was performed for the inhibition zone (nm) and the docking score.  相似文献   

10.
Fungi fibrinolytic compound 1 (FGFC1) is a rare marine-derived compound that can enhance fibrinolysis both in vitro and in vivo. The fibrinolytic activity characterization of FGFC1 mediated by plasminogen (Glu-/Lys-) and a single-chain urokinase-type plasminogen activator (pro-uPA) was further evaluated. The binding sites and mode of binding between FGFC1 and plasminogen were investigated by means of a combination of in vitro experiments and molecular docking. A 2.2-fold enhancement of fibrinolytic activity was achieved at 0.096 mM FGFC1, whereas the inhibition of fibrinolytic activity occurred when the FGFC1 concentration was above 0.24 mM. The inhibition of fibrinolytic activity of FGFC1 by 6-aminohexanoic acid (EACA) and tranexamic acid (TXA) together with the docking results revealed that the lysine-binding sites (LBSs) play a crucial role in the process of FGFC1 binding to plasminogen. The action mechanism of FGFC1 binding to plasminogen was inferred, and FGFC1 was able to induce plasminogen to exhibit an open conformation by binding through the LBSs. The molecular docking results showed that docking of ligands (EACA, FGFC1) with receptors (KR1–KR5) mainly occurred through hydrophilic and hydrophobic interactions. In addition, the binding affinity values of EACA to KR1–KR5 were −5.2, −4.3, −3.7, −4.5, and −4.3 kcal/moL, respectively, and those of FGFC1 to KR1–KR5 were −7.4, −9.0, −6.3, −8.3, and −6.7 kcal/moL, respectively. The findings demonstrate that both EACA and FGFC1 bound to KR1–KR5 with moderately high affinity. This study could provide a theoretical basis for the clinical pharmacology of FGFC1 and establish a foundation for practical applications of FGFC1.  相似文献   

11.
Breast cancer is one of the most prevalent cancers in the world. Traditionally, medicinal plants have been used to cure various types of diseases and disorders. Based on a literature survey, the current study was undertaken to explore the anticancer potential of Foeniculum vulgare Mill. phytoconstituents against breast cancer target protein (PDB ID: 6CHZ) by the molecular docking technique. Molecular docking was done using Autodock/vina software. Toxicity was predicted by the Protox II server and drug likeness was predicted by Molinspiration. 100 ns MD simulation of the best protein-ligand complexes were done using the Amber 18 tool. The present molecular docking investigation has revealed that among the 40 selected phytoconstituents of F. vulgare, α-pinene and D-limonene showed best binding energy (−6 and −5.9 kcal/mol respectively) with the breast cancer target. α-Pinene and D-limonene followed all the parameters of toxicity, and 100 ns MD simulations of α-pinene and D-limonene complexes with 6CHZ were found to be stable. α-Pinene and D-limonene can be used as new therapeutic agents to cure breast cancer.  相似文献   

12.
13.
Neurodegenerative diseases, for example Alzheimer’s, are perceived as driven by hereditary, cellular, and multifaceted biochemical actions. Numerous plant products, for example flavonoids, are documented in studies for having the ability to pass the blood-brain barrier and moderate the development of such illnesses. Computer-aided drug design (CADD) has achieved importance in the drug discovery world; innovative developments in the aspects of structure identification and characterization, bio-computational science, and molecular biology have added to the preparation of new medications towards these ailments. In this study we evaluated nine flavonoid compounds identified from three medicinal plants, namely T. diversifolia, B. sapida, and I. gabonensis for their inhibitory role on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoamine oxidase (MAO) activity, using pharmacophore modeling, auto-QSAR prediction, and molecular studies, in comparison with standard drugs. The results indicated that the pharmacophore models produced from structures of AChE, BChE and MAO could identify the active compounds, with a recuperation rate of the actives found near 100% in the complete ranked decoy database. Moreso, the robustness of the virtual screening method was accessed by well-established methods including enrichment factor (EF), receiver operating characteristic curve (ROC), Boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC), and area under accumulation curve (AUAC). Most notably, the compounds’ pIC50 values were predicted by a machine learning-based model generated by the AutoQSAR algorithm. The generated model was validated to affirm its predictive model. The best models achieved for AChE, BChE and MAO were models kpls_radial_17 (R2 = 0.86 and Q2 = 0.73), pls_38 (R2 = 0.77 and Q2 = 0.72), kpls_desc_44 (R2 = 0.81 and Q2 = 0.81) and these externally validated models were utilized to predict the bioactivities of the lead compounds. The binding affinity results of the ligands against the three selected targets revealed that luteolin displayed the highest affinity score of −9.60 kcal/mol, closely followed by apigenin and ellagic acid with docking scores of −9.60 and −9.53 kcal/mol, respectively. The least binding affinity was attained by gallic acid (−6.30 kcal/mol). The docking scores of our standards were −10.40 and −7.93 kcal/mol for donepezil and galanthamine, respectively. The toxicity prediction revealed that none of the flavonoids presented toxicity and they all had good absorption parameters for the analyzed targets. Hence, these compounds can be considered as likely leads for drug improvement against the same.  相似文献   

14.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic, which generated more than 1.82 million deaths in 2020 alone, in addition to 83.8 million infections. Currently, there is no antiviral medication to treat COVID-19. In the search for drug leads, marine-derived metabolites are reported here as prospective SARS-CoV-2 inhibitors. Two hundred and twenty-seven terpene natural products isolated from the biodiverse Red-Sea ecosystem were screened for inhibitor activity against the SARS-CoV-2 main protease (Mpro) using molecular docking and molecular dynamics (MD) simulations combined with molecular mechanics/generalized Born surface area binding energy calculations. On the basis of in silico analyses, six terpenes demonstrated high potency as Mpro inhibitors with ΔGbinding ≤ −40.0 kcal/mol. The stability and binding affinity of the most potent metabolite, erylosides B, were compared to the human immunodeficiency virus protease inhibitor, lopinavir. Erylosides B showed greater binding affinity towards SARS-CoV-2 Mpro than lopinavir over 100 ns with ΔGbinding values of −51.9 vs. −33.6 kcal/mol, respectively. Protein–protein interactions indicate that erylosides B biochemical signaling shares gene components that mediate severe acute respiratory syndrome diseases, including the cytokine- and immune-signaling components BCL2L1, IL2, and PRKC. Pathway enrichment analysis and Boolean network modeling were performed towards a deep dissection and mining of the erylosides B target–function interactions. The current study identifies erylosides B as a promising anti-COVID-19 drug lead that warrants further in vitro and in vivo testing.  相似文献   

15.
16.
In this paper, we evaluated the drug-receptor interactions responsible for the antimicrobial activity of thymol, the major compound present in the essential oil (EO) of Lippia thymoides (L. thymoides) Mart. & Schauer (Verbenaceae). It was previously reported that this EO exhibits antimicrobial activity against Candida albicans (C. albicans), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli). Therefore, we used molecular docking, molecular dynamics simulations, and free energy calculations to investigate the interaction of thymol with pharmacological receptors of interest to combat these pathogens. We found that thymol interacted favorably with the active sites of the microorganisms’ molecular targets. MolDock Score results for systems formed with CYP51 (C. albicans), Dihydrofolate reductase (S. aureus), and Dihydropteroate synthase (E. coli) were −77.85, −67.53, and −60.88, respectively. Throughout the duration of the MD simulations, thymol continued interacting with the binding pocket of the molecular target of each microorganism. The van der Waals (ΔEvdW = −24.88, −26.44, −21.71 kcal/mol, respectively) and electrostatic interaction energies (ΔEele = −3.94, −11.07, −12.43 kcal/mol, respectively) and the nonpolar solvation energies (ΔGNP = −3.37, −3.25, −2.93 kcal/mol, respectively) were mainly responsible for the formation of complexes with CYP51 (C. albicans), Dihydrofolate reductase (S. aureus), and Dihydropteroate synthase (E. coli).  相似文献   

17.
COVID-19 is still a global pandemic that has not been stopped. Many traditional medicines have been demonstrated to be incredibly helpful for treating COVID-19 patients while fighting the disease worldwide. We introduced 10 bioactive compounds derived from traditional medicinal plants and assessed their potential for inhibiting viral spike protein (S-protein), Papain-like protease (PLpro), and RNA dependent RNA polymerase (RdRp) using molecular docking protocols where we simulate the inhibitors bound to target proteins in various poses and at different known binding sites using Autodock version 4.0 and Chimera 1.8.1 software. Results found that the chicoric acid, quinine, and withaferin A ligand strongly inhibited CoV-2 S -protein with a binding energy of −8.63, −7.85, and −7.85 kcal/mol, respectively. Our modeling work also suggested that curcumin, quinine, and demothoxycurcumin exhibited high binding affinity toward RdRp with a binding energy of −7.80, −7.80, and −7.64 kcal/mol, respectively. The other ligands, namely chicoric acid, demothoxycurcumin, and curcumin express high binding energy than the other tested ligands docked to PLpro with −7.62, −6.81, and −6.70 kcal/mol, respectively. Prediction of drug-likeness properties revealed that all tested ligands have no violations to Lipinski’s Rule of Five except cepharanthine, chicoric acid, and theaflavin. Regarding the pharmacokinetic behavior, all ligand predicted to have high GI-absorption except chicoric acid and theaflavin. At the same way chicoric acid, withaferin A, and withanolide D predicted to be substrate for multidrug resistance protein (P-gp substrate). Caffeic acid, cepharanthine, chicoric acid, withaferin A, and withanolide D also have no inhibitory effect on any cytochrome P450 enzymes. Promisingly, chicoric acid, quinine, curcumin, and demothoxycurcumin exhibited high binding affinity on SARS-CoV-2 target proteins and expressed good drug-likeness and pharmacokinetic properties. Further research is required to investigate the potential uses of these compounds in the treatment of SARS-CoV-2.  相似文献   

18.
Stimulator of interferon genes (STING) is an endoplasmic reticulum adaptor transmembrane protein that plays a pivotal role in innate immune system. STING agonists, such as endogenous cyclic dinucleotide (CDN) cyclic GMP-AMP (cGAMP), have been used in diverse clinical research for immunogenic tumor clearance, antiviral treatments and vaccine adjuvants. CDNs containing noncanonical mixed 3′-5′ and 2′-5′ phosphodiester linkages show higher potency in the activation of the STING pathway. In this study, a series of 2′3′-CDNs were designed and synthesized through a modified one-pot strategy. We then established a surface plasmon resonance (SPR)-based binding assay to quantify the binding affinities of synthesized CDNs for human STING, which requested a minuscule amount of sample without any pretreatment. Using this assay, we identified compound 8d (KD = 0.038 μM), a novel CDN that showed higher binding affinity with hSTING than cGAMP (KD = 0.543 μM). Cellular assays confirmed that 8d could trigger the expression of type I IFNs and other proinflammatory cytokines more robust than cGAMP. 8d also exhibited more resistant than cGAMP to enzymatic cleavage in vitro, indicating the successful improvement in drug availability. These findings provide guidelines for the design and structural optimization of CDNs as STING agonists.  相似文献   

19.
Bacteria expressing New Delhi metallo-β-lactamase-1 (NDM-1) can hydrolyze β-lactam antibiotics (penicillins, cephalosporins, and carbapenems) and, thus, mediate multidrug resistance. The worldwide dissemination of NDM-1 poses a serious threat to public health, imposing a huge economic burden in the development of new antibiotics. Thus, there is an urgent need for the identification of novel NDM-1 inhibitors from a pool of already-known drug molecules. Here, we screened a library of FDA-approved drugs to identify novel non-β-lactam ring-containing inhibitors of NDM-1 by applying computational as well as in vitro experimental approaches. Different steps of high-throughput virtual screening, molecular docking, molecular dynamics simulation, and enzyme kinetics were performed to identify risedronate and methotrexate as the inhibitors with the most potential. The molecular mechanics/generalized Born surface area (MM/GBSA) and molecular dynamics (MD) simulations showed that both of the compounds (risedronate and methotrexate) formed a stable complex with NDM-1. Furthermore, analyses of the binding pose revealed that risedronate formed two hydrogen bonds and three electrostatic interactions with the catalytic residues of NDM-1. Similarly, methotrexate formed four hydrogen bonds and one electrostatic interaction with NDM-1’s active site residues. The docking scores of risedronate and methotrexate for NDM-1 were –10.543 kcal mol−1 and −10.189 kcal mol−1, respectively. Steady-state enzyme kinetics in the presence of risedronate and methotrexate showed a decreased catalytic efficiency (i.e., kcat/Km) of NDM-1 on various antibiotics, owing to poor catalytic proficiency and affinity. The results were further validated by determining the MICs of imipenem and meropenem in the presence of risedronate and methotrexate. The IC50 values of the identified inhibitors were in the micromolar range. The findings of this study should be helpful in further characterizing the potential of risedronate and methotrexate to treat bacterial infections.  相似文献   

20.
A new coumarin derivative, 7-((8-(4-benzylpiperidin-1-yl)octyl)oxy)-4-methyl-2H-chromen-2-one (C3), was synthesized by two-step alkylation reaction of 7-hydroxy-4-methyl coumarin. The structure and purity of the compound were characterized by its 1H and 13C NMR, FT-IR and LC-MS spectral data. The DNA binding interaction of C3 was evaluated using UV–vis spectrophotometric and viscosimetric methods. These experiments showed that C3 was bound in intercalative mode. The antioxidant activity of C3 was evaluated by the DPPH method, the antioxidant activity results displayed that C3 had DPPH radical scavenging effect. The possible mechanism of antioxidant and anticancer activity of C3 was investigated via molecular docking by using two enzymes CYP450 and EGFR as receptors. The C3 also tended a good antioxidant ability based on the result of the molecular docking analysis, with good binding affinity values (-7.82 kcal/mol) and binding site interactions. Molecular Dynamics (MD) simulation was implemented to elucidate the interactions with the protein–ligand complex in 20 ns. The ADMET analyzes which paved the way for us to predict C3 as a drug candidate were also performed. All experimental and theoretical results showed that the compound C3 was a potential drug candidate as an antioxidant and anticancer agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号