首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our experiments may help to answer the question of whether cowslip (Primula veris L.) is a rich source of bioactive substances that can be obtained by efficient extraction with potential use as a food additive. A hypothesis assumed that the type of solvent used for plant extraction and the individual morphological parts of Primula veris L. used for the preparation of herbal extracts will have key impacts on the efficiency of the extraction of bioactive compounds, and thus, the health-promoting quality of plant concentrates produced. Most analysis of such polyphenolic compound contents in extracts from Primula veris L. has been performed by using chromatography methods such as ultra-performance reverse-phase liquid chromatography (UPLC−PDA−MS/MS). Experiments demonstrated that the most effective extraction agent for fresh study material was water at 100 °C, whereas for dried material it was 70% ethanol. The richest sources of polyphenolic compounds were found in cowslip primrose flowers and leaves. The aqueous and ethanol extracts from Primula veris L. were characterized by a quantitatively rich profile of polyphenolic substances, and a high antioxidative potential. Selective extraction with the use of mild conditions and neutral solvents is the first step to obtaining preparations from cowslip primrose with a high content of bioactive substances.  相似文献   

2.
The traditional Cannabis plant as a medicinal crop has been explored for many thousands of years. The Cannabis industry is rapidly growing; therefore, optimising drying methods and producing high-quality medical products have been a hot topic in recent years. We systemically analysed the current literature and drew a critical summary of the drying methods implemented thus far to preserve the quality of bioactive compounds from medicinal Cannabis. Different drying techniques have been one of the focal points during the post-harvesting operations, as drying preserves these Cannabis products with increased shelf life. We followed or even highlighted the most popular methods used. Drying methods have advanced from traditional hot air and oven drying methods to microwave-assisted hot air drying or freeze-drying. In this review, traditional and modern drying technologies are reviewed. Each technology will have different pros and cons of its own. Moreover, this review outlines the quality of the Cannabis plant component harvested plays a major role in drying efficiency and preserving the chemical constituents. The emergence of medical Cannabis, and cannabinoid research requires optimal post-harvesting processes for different Cannabis strains. We proposed the most suitable method for drying medicinal Cannabis to produce consistent, reliable and potent medicinal Cannabis. In addition, drying temperature, rate of drying, mode and storage conditions after drying influenced the Cannabis component retention and quality.  相似文献   

3.
Three methods commonly used for the extraction of bioactive molecules from natural plant material are compared. Dried Hypericum perforatum L. plant material is subjected to Soxhlet extraction, extraction by ultrasonication, and accelerated solvent extraction. The percentage of two bioactive compounds, hyperforin and hypericin, in the extracts is used as a parameter for comparison of the extraction procedure.  相似文献   

4.
Li P  Li SP  Wang YT 《Electrophoresis》2006,27(23):4808-4819
Advantages of CZE such as high efficiency, low cost, short analysis time, and easy implementation result in its wide applications for analysis of phytochemical bioactive compounds (e.g. flavonoids, alkaloids, terpenoids, phenolic acid, saponins, anthraquinones and coumarins). However, several aspects, including sample preparation, separation, and detection have significant effects on CZE analysis. Therefore, optimization of these procedures is necessary for development of the method. In this review, sample preparation such as extraction method and preconcentration, separation factors including buffer type, concentration and pH, additives, voltage and temperature, as well as detection, e.g. direct and indirect UV detection, LIF and MS were discussed for optimization of CZE analysis on phytochemical bioactive compounds. The optimized strategies were also reviewed.  相似文献   

5.
气凝胶是一类轻质、低密度的三维纳米多孔固态材料,因其独特的高孔隙率、高比表面积和低导热系数等特性,使其在吸附、催化、保温隔热和隔音等诸多领域具有广泛的用途,目前其相关研究在材料科学领域受到了广泛的关注。气凝胶的制备主要包括溶胶-凝胶过程和湿凝胶干燥两个步骤,湿凝胶的干燥是制备气凝胶过程中至关重要而又较为困难的一步。传统的气凝胶通过超临界干燥制备,工艺复杂、成本高,而且由于干燥过程在高温高压条件下进行,有一定的危险性并且不适宜大规模生产,因此如何通过常压干燥获得高比表面积、高孔隙率、低密度的性能优异的气凝胶是其研究的重要方向之一。本文简要介绍了湿凝胶的制备以及凝胶干燥理论,详细介绍了近年来常压干燥方法气凝胶制备的研究进展,并对其未来发展前景做出了展望。  相似文献   

6.
The influence of natural drying (ND), hot-air drying (HD), vacuum drying (VD), infrared drying (ID) and freeze drying (FD) on bioactive compounds and bioactivities of Isodon rubescens (Hemsl.) was investigated in this study. The results showed that different drying methods resulted in the differences in bioactive compositions’ content, antioxidant and antibacterial activities of extracts from I. rubescens. FD sample possessed the highest content of total phenolics, total flavonoids and several main phenolic compounds, as well as the stronger antioxidant and antibacterial activities, followed by ND, HD and VD, the lowest for ID samples. For this reason, freeze drying would seem to be more advisable for the drying I. rubescens, and future studies could focus on the quality evaluation and optimising various drying parameters.  相似文献   

7.
Different parts of a plant (seeds, fruits, flower, leaves, stem, and roots) contain numerous biologically active compounds called “phytoconstituents” that consist of phenolics, minerals, amino acids, and vitamins. The conventional techniques applied to extract these phytoconstituents have several drawbacks including poor performance, low yields, more solvent use, long processing time, and thermally degrading by-products. In contrast, modern and advanced extraction nonthermal technologies such as pulsed electric field (PEF) assist in easier and efficient identification, characterization, and analysis of bioactive ingredients. Other advantages of PEF include cost-efficacy, less time, and solvent consumption with improved yields. This review covers the applications of PEF to obtain bioactive components, essential oils, proteins, pectin, and other important materials from various parts of the plant. Numerous studies compiled in the current evaluation concluded PEF as the best solution to extract phytoconstituents used in the food and pharmaceutical industries. PEF-assisted extraction leads to a higher yield, utilizes less solvents and energy, and it saves a lot of time compared to traditional extraction methods. PEF extraction design should be safe and efficient enough to prevent the degradation of phytoconstituents and oils.  相似文献   

8.
In recent years, more attention has been paid to natural sources of antioxidants. Flavonoids are natural substances synthesized in several parts of plants that exhibit a high antioxidant capacity. They are a large family, presenting several classes based on their basic structure. Flavonoids have the ability to control the accumulation of reactive oxygen species (ROS) via scavenger ROS when they are formed. Therefore, these antioxidant compounds have an important role in plant stress tolerance and a high relevance in human health, mainly due to their anti-inflammatory and antimicrobial properties. In addition, flavonoids have several applications in the food industry as preservatives, pigments, and antioxidants, as well as in other industries such as cosmetics and pharmaceuticals. However, flavonoids application for industrial purposes implies extraction processes with high purity and quality. Several methodologies have been developed aimed at increasing flavonoid extraction yield and being environmentally friendly. This review presents the most abundant natural flavonoids, their structure and chemical characteristics, extraction methods, and biological activity.  相似文献   

9.
The drying of fruit juices has advantages such as easy handling of powders, reduction in volume, and preservation of the characteristics of the fruit. Thus, in this work, the effect of the spray drying conditions of strawberry juice (SJ) with maltodextrin (MX) as a carrying agent on the microencapsulation of bioactive compounds and physicochemical properties was studied. The content of phenolic compounds and antioxidant activity showed higher values at low concentrations of MX, while the effect of drying temperature was negligible. The thermal characterization showed that the low molecular weight sugars in the juice decreased the glass transition temperature (Tg). The morphological analysis by scanning electron microscopy (SEM) indicated that at low concentrations of MX, the particles agglomerated, while at intermediate and high concentrations, the particles were observed as well separated. Through microstructural analysis by X-ray diffraction (XRD), the presence of amorphous state was confirmed in all the samples, which is beneficial for preventing chemical and biochemical reactions, and promoting the conservation of the microencapsulated bioactive compounds.  相似文献   

10.
The development of plant protein-based delivery systems to protect and control lipophilic bioactive compound delivery (such as vitamins, polyphenols, carotenoids, polyunsaturated fatty acids) has increased interest in food, nutraceutical, and pharmaceutical fields. The quite significant ascension of plant proteins from legumes, oil/edible seeds, nuts, tuber, and cereals is motivated by their eco-friendly, sustainable, and healthy profile compared with other sources. However, many challenges need to be overcome before their widespread use as raw material for carriers. Thus, modification approaches have been used to improve their techno-functionality and address their limitations, aiming to produce a new generation of plant-based carriers (hydrogels, emulsions, self-assembled structures, films). This paper addresses the advantages and challenges of using plant proteins and the effects of modification methods on their nutritional quality, bioactivity, and techno-functionalities. Furthermore, we review the recent progress in designing plant protein-based delivery systems, their main applications as carriers for lipophilic bioactive compounds, and the contribution of protein-bioactive compound interactions to the dynamics and structure of delivery systems. Expressive advances have been made in the plant protein area; however, new extraction/purification technologies and protein sources need to be found Their functional properties must also be deeply studied for the rational development of effective delivery platforms.  相似文献   

11.
Lippia graveolens is a traditional crop and a rich source of bioactive compounds with various properties (e.g., antioxidant, anti-inflammatory, antifungal, UV defense, anti-glycemic, and cytotoxicity) that is primarily cultivated for essential oil recovery. The isolated bioactive compounds could be useful as additives in the functional food, nutraceuticals, cosmetics, and pharmaceutical industries. Carvacrol, thymol, β-caryophyllene, and p-cymene are terpene compounds contained in oregano essential oil (OEO); flavonoids such as quercetin O-hexoside, pinocembrin, and galangin are flavonoids found in oregano extracts. Furthermore, thermoresistant compounds that remain in the plant matrix following a thermal process can be priced in terms of the circular economy. By using better and more selective extraction conditions, the bioactive compounds present in Mexican oregano can be studied as potential inhibitors of COVID-19. Also, research on extraction technologies should continue to ensure a higher quality of bioactive compounds while preventing an undesired chemical shift (e.g., hydrolysis). The oregano fractions can be used in the food, health, and agricultural industries.  相似文献   

12.
Bacterial cellulose aerogels overcome the drawback of shrinking during preparation by drying with supercritical CO2. Thus, the pore network of these gels is fully accessible. These materials can be fully rewetted to 100% of its initial water content, without collapsing of the structure due to surface tension of the rewetting solvent. This rehydration property and the high pore volume of these material rendered bacterial cellulose aerogels very interesting as controlled release matrices. Supercritical CO2 drying, the method of choice for aerogel preparation, can simultaneously be used to precipitate solutes within the cellulose matrix and thus to load bacterial cellulose aerogels with active substances. This process, frequently termed supercritical antisolvent precipitation, is able to perform production of the actual aerogel and its loading in one single preparation step. In this work, the loading of a bacterial cellulose aerogel matrix with two model substances, namely dexpanthenol and L-ascorbic acid, and the release behavior from the matrix were studied. A mathematical release model was applied to model the interactions between the solutes and the cellulose matrix. The bacterial cellulose aerogels were easily equipped with the reagents by supercritical antisolvent precipitation. Loading isotherms as well as release kinetics indicated no specific interaction between matrix and loaded substances. Hence, loading and release can be controlled and predicted just by varying the thickness of the gel and the solute concentration in the loading bath.  相似文献   

13.
Coffee husks (Coffea arabica L.) are characterized by exhibiting secondary metabolites such as phenolic compounds, which can be used as raw material for obtaining bioactive compounds of interest in food. The objective of this study is to evaluate different methods for obtaining the raw material and extracting solutions of bioactive compounds from coffee husks. Water bath and ultrasound-assisted extraction methods were used, using water (100%) or ethanol (100%) or a mixture of both (1:1) as extracting solutions and the form of the raw material was in natura and dehydrated. The extracts were evaluated by their antioxidant potential using DPPH radicals, ABTS, and iron reduction (ferric reducing antioxidant power (FRAP)), and later total phenolic compounds, total flavonoids, and condensed tannins were quantified the phenolic majority compounds were identified. It was verified that the mixture of water and ethanol (1:1) showed better extraction capacity of the compounds with antioxidant activity and that both conventional (water bath) or unconventional (ultrasound) methods showed satisfactory results. Finally, a satisfactory amount of bioactive compounds was observed in evaluating the chemical composition (total phenolic compounds, total flavonoids, condensed tannins, as well as the analysis of the phenolic profile) of these extracts. Corroborating with the results of the antioxidant activities, the best extracting solution was generally the water and ethanol mixture (1:1) using a dehydrated husk and water bath as the best method, presenting higher levels of the bioactive compounds in question, with an emphasis on chlorogenic acid. Thus, it can be concluded that the use of coffee husk as raw material to obtain extracts of bioactive compounds is promising. Last, the conventional method (water bath) and the water and ethanol mixture (1:1) stood out among the methods and extracting solutions used for the dehydrated coffee husk.  相似文献   

14.
The present review summarizes scientific reports from between 2010 and 2019 on the use of capillary electrophoresis to quantify active constituents (i.e., phenolic compounds, coumarins, protoberberines, curcuminoids, iridoid glycosides, alkaloids, triterpene acids) in medicinal plants and herbal formulations. The present literature review is founded on PRISMA guidelines and selection criteria were formulated on the basis of PICOS (Population, Intervention, Comparison, Outcome, Study type). The scrutiny reveals capillary electrophoresis with ultraviolet detection as the most frequently used capillary electromigration technique for the selective separation and quantification of bioactive compounds. For the purpose of improvement of resolution and sensitivity, other detection methods are used (including mass spectrometry), modifiers to the background electrolyte are introduced and different extraction as well as pre-concentration techniques are employed. In conclusion, capillary electrophoresis is a powerful tool and for given applications it is comparable to high performance liquid chromatography. Short time of execution, high efficiency, versatility in separation modes and low consumption of solvents and sample make capillary electrophoresis an attractive and eco-friendly alternative to more expensive methods for the quality control of drugs or raw plant material without any relevant decrease in sensitivity.  相似文献   

15.
Growing attention to environmental protection leads food industries to adopt a model of “circular economy” applying safe and sustainable technologies to recover, recycle and valorize by-products. Therefore, by-products become raw material for other industries. Tomato processing industry produces significant amounts of by-products, consisting of skins and seeds. Tomato skin is very rich in lycopene, and from its seeds, high nutritional oil can be extracted. Alternative use of the two fractions not only could cut disposal costs but also allow one to extract bioactive compounds and an oil with a high nutritional value. This review focused on the recent advance in extraction of lycopene, whose beneficial effects on health are widely recognized.  相似文献   

16.
Phyllanthus amarus (P. amarus) is a herbal plant used in the treatment of various diseases such as hepatitis, diabetes, and cancer. Efficiency of its bioactive compounds extraction and therefore the biological activity of the extracts are significantly influenced by both solvent character and extraction method. This study is aimed at the determination of the influence of six various solvents (water, acetonitrile, ethanol, methanol, ethyl acetate, and dichloromethane) and nine different extraction methods (conventional, ultrasound-assisted, microwave-assisted, and six novel methods) on the extraction efficiency and antioxidant capacity of P. amarus. The results indicated that water extracted the maximal amount of phenolics from P. amarus and had the highest antioxidant capacity, while microwave-assisted extraction provided the highest yields of phenolics and saponins, and the highest antioxidant capacity with the lowest energy consumption when compared to the other extraction methods. These findings implied that water and microwave-assisted extraction are recommended as the most effective solvent and method for the extraction of bioactive compounds from P. amarus for potential application in the pharmaceutical and nutraceutical industries.  相似文献   

17.
近年来市场对具有营养和药用价值的活性化合物的需求量逐年增加,传统的生产方法已无法满足该类化合物的大规模应用。漆酶是近些年广受欢迎的生物催化剂之一,它可以在温和的条件下催化活性化合物的高效合成,并且有极大潜力取代传统的工业生产方法。本文着重回顾了近十年来漆酶在催化合成活性化合物中的应用,并对漆酶的结构及作用机制进行了介绍;同时指出了漆酶工业化应用中存在的一些问题,比如漆酶产量不足、部分酶促反应介质不适于工业化应用等。通过异源表达、筛选高产菌株提高漆酶产量、使用固定化技术和蛋白质工程提高漆酶的使用寿命、开发更加高效低廉的反应介质系统与寻找新的漆酶底物相结合来降低漆酶的应用成本是今后主要的发展趋势。  相似文献   

18.
The hot air (HA) method is the most widely implemented drying method for plants (herbs, vegetables, and fruits). This method has a few drawbacks that include long drying time, limited heat transfer, and limited thermal conductivity. This study investigated the effects of HA and infra-red (IR) heating method on biologically active compounds from different herbs (Khaffir lime, Lemongrass, Prai, Tamarind, and Turmeric). The efficiency of the drying methods was evaluated by considering (a) moisture ratio (MR), (b) specific energy consumption (SEC, MJ/kg.H2O), (c) moisture diffusivity (Deff), and (d) activation energy (Ea, kJ/mol). The active compounds were extracted from HA and IR dried herbs using different solvents (hexane, water, and ethanol) through Solid-Liquid Extraction (SLE) and Soxhlet Solvent Extraction (SSE) methods. The moisture removal in the IR drying process increased 10–11% for the herb samples. Specific energy consumption (SEC) increase during the IR drying process is attributed to the rapid evaporation of water at shorter time intervals than HA. Activation energy (Ea) values decreased by 1.66, 1.48, 2.24, 3.13, and 2.07 fold times for IR dried prai, turmeric, lemongrass, tamarind, and kaffir lime, respectively. The higher yields of herbal extracts and the abundance of bioactive terpene derivatives in hexane extracts were obtained from HA herbs compared to IR samples. Therefore, it is concluded that the IR method and SSE process using hexane was suitable to dry and retain the bioactive active compounds within herbs. Further, the IR method over the HA method was considered based on energy consumption, processing time, yield, and active compounds.  相似文献   

19.
Despite substantial developments of extraction and separation techniques, isolation of natural products from natural sources is still a challenging task. Undoubtedly hybrid methods like liquid chromatography with NMR spectroscopy or liquid chromatography coupled with mass spectrometry made on‐line structure elucidation possible and provided impressive examples of natural product identification without prior isolation, however, in many cases the necessity to get the purified compounds in hand is still a fact. The process begins with the collection of desired plant material which is subjected to the suitable extraction process. The complex crude extracts are then monitored by various chromatographic procedures to separate and quantify the desired compounds. The active plant extracts are then fractionated to isolate the bioactive compounds in their pure form. The fully identified compound is used as a lead for the production of related analogues to modulate the biological activity and to carry out structure‐activity relationship. The major isolated bioactive compound is used for semi‐synthetic modification or total synthesis should be carried out such that it is relatively easy to modify the structure of the lead compound. This is a simple and cost‐effective way to increase the chance to discover lead compounds. The biological activity in vitro and in vivo has to be done after purification.  相似文献   

20.
Freeze drying was compared with spray drying regarding feasibility to process wild thyme drugs in order to obtain dry formulations at laboratory scale starting from liquid extracts produced by different extraction methods: maceration and heat-, ultrasound-, and microwave-assisted extractions. Higher total powder yield (based on the dry weight prior to extraction) was achieved by freeze than spray drying and lower loss of total polyphenol content (TPC) and total flavonoid content (TFC) due to the drying process. Gelatin as a coating agent (5% w/w) provided better TPC recovery by 70% in case of lyophilization and higher total powder yield in case of spray drying by diminishing material deposition on the wall of the drying chamber. The resulting gelatin-free and gelatin-containing powders carried polyphenols in amount ~190 and 53–75 mg gallic acid equivalents GAE/g of powder, respectively. Microwave-assisted extract formulation was distinguished from the others by a higher content of polyphenols, proteins and sugars, higher bulk density and lower solubility. The type of the drying process mainly affected the position of the gelatin-derived -OH and amide bands in FTIR spectra. Spray-dried formulations compared to freeze-dried expressed higher thermal stability as confirmed by differential scanning calorimetry analysis and a higher diffusion coefficient; the last feature can be associated with the lower specific surface area of irregularly shaped freeze-dried particles (151–223 µm) compared to small microspheres (~8 µm) in spray-dried powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号