首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptivity of Hypersonic Boundary Layer to Wall Disturbances   总被引:1,自引:0,他引:1  
Theoretical analysis of hypersonic boundary-layer receptivity to wall disturbances is conducted using a combination of asymptotic and numerical methods. Excitation of the second mode by distributed and local forcing on a flat-plate surface is studied under adiabatic and cooled wall conditions. Analysis addresses receptivity to wall vibrations, periodic suction/blowing, and temperature disturbances. A strong excitation occurs in local regions where forcing is in resonance with normal waves. It is shown that the receptivity function tends to infinity as the resonance point tends to the branch point of the discrete spectrum that is typical for boundary layers on cool surfaces. Asymptotic analysis resolves this singularity and provides the receptivity coefficient in the branch-point vicinity. Numerical results indicate extremely high receptivity to vibrations and suction/blowing in the vicinity of the branch point located near the lower neutral branch of the Mack second mode. Received 5 September 2000 and accepted 7 September 2001  相似文献   

2.
Laminar boundary layer flow over an infinite-span, finite-length flat plate is investigated in the regime of strong interaction with a hypersonic gas flow. Under the assumption that an additional condition dependent on the transverse coordinate can be imposed on the trailing edge of the plate the flow functions are expanded in power series in the vicinity of the leading edge. It is shown that these expansions include an indefinite function dependent on the transverse coordinate. The corresponding boundary value problems are formulated and solved and the eigenvalues are determined. It is established that in this case the two-dimensional boundary layer can rearrange itself into a three-dimensional boundary layer.  相似文献   

3.
Prehistory of Instability in a Hypersonic Boundary Layer   总被引:1,自引:0,他引:1  
The initial phase of hypersonic boundary-layer transition comprising excitation of boundary-layer modes and their downstream evolution from receptivity regions to the unstable region (instability prehistory problem) is considered. The disturbance spectrum reveals the following features: (1) the first and second modes are synchronized with acoustic waves near the leading edge; (2) further downstream, the first mode is synchronized with entropy and vorticity waves; (3) near the lower neutral branch of the Mack second mode, the first mode is synchronized with the second mode. Disturbance behavior in Regions (2) and (3) is studied using the multiple-mode method accounting for interaction between modes due to mean-flow nonparallel effects. Analysis of the disturbance behavior in Region 3) provides the intermodal exchange rule coupling input and output amplitudes of the first and second modes. It is shown that Region (3) includes branch points at which disturbance group velocity and amplitude are singular. These singularities can cause difficulties in stability analyses. In Region (2), vorticity/entropy waves are partially swallowed by the boundary layer. They may effectively generate the Mack second mode near its lower neutral branch. Received 17 July 2000 and accepted 23 March 2001  相似文献   

4.
Within the framework of the weakly nonlinear stability theory, group interaction of disturbances in a supersonic boundary layer is considered. The disturbances are represented by two spatial packets of traveling instability waves (wave trains) with multiple frequencies. The possibility of energy redistribution in such wave systems in the case of three-wave resonant interactions of packet constituents is considered. The model is used to test the dynamics of unstable waves arising due to introduction of controlled high-intensity disturbances into a supersonic boundary layer. It is found that this mechanism is not the main one for the features of streamwise dynamics of such nonlinear waves being observed.  相似文献   

5.
6.
The processes of wave disturbance propagation in a supersonic boundary layer with self-induced pressure [1–4] are analyzed. The application of a new mathematical apparatus, namely, the theory of characteristics for systems of differential equations with operator coefficients [5–8], makes it possible to obtain generalized characteristics of the discrete and continuous spectra of the governing system of equations. It is shown that the discontinuities in the derivatives of the solution of the boundary layer equations are concentrated on the generalized characteristics. It is established that in the process of flow evolution the amplitude of the weak discontinuity in the derivatives may increase without bound, which indicates the possibility of breaking of nonlinear waves traveling in the boundary layer.  相似文献   

7.
The unsteady heat transfer at the stagnation point on a blunt body traveling at hypersonic velocity through a layer of nonuniform dusty gas with low-inertia particles (not deposited on the body surface) is investigated. Using the matched asymptotic expansion method, the equations of the two-phase unsteady boundary layer near the symmetry axis of the body are derived with account for the polydispersity of the particles. The structure of the unsteady boundary layer and the variation of the friction and heat transfer coefficients at the stagnation point are studied numerically. Layered nonuniformities of the particle concentration and size are considered, the limits of variation of the thermal and mechanicals loads are found, and the effect of the dust polydispersity on the heat transfer is investigated.  相似文献   

8.
A nonlinear time-dependent model of the development of longwave perturbations in a hypersonic boundary layer flow in the neighborhood of a cooled surface is constructed. The pressure in the flow is assumed to be induced the combined variation of the thicknesses of the near-wall and main parts of the boundary layer. Numerical and analytic solutions are obtained in the linear approximation. It is shown that if the main part of the boundary layer is subsonic as a whole, its action reduces the perturbation damping upstream and the perturbation growth downstream, while a supersonic, as a whole, main part of the boundary layer creates the opposite effects. An analysis of the solutions obtained makes it possible to conclude that the asymptotic model proposed can describe the three-dimensional instability of the Tollmien-Schlichting waves.  相似文献   

9.
Numerical simulations have been performed of a synthetic jet interacting with a laminar hypersonic boundary layer. Two datum cases were also considered, no jet and steady jet. The simulations for the case of no jet are in agreement with available experimental data. Predicted flow features of the steady jet interaction are broadly consistent with previous studies. For the synthetic jet, the upstream and downstream separated regions are dramatically reduced in size, and the jet appears to lie closer to the surface, compared with the steady jet. It is also found that the synthetic jet induces a greater mixing rate than the steady jet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
An intermittency transport equation is developed in this study to model the laminar-turbulence boundary layer transition at supersonic and hypersonic conditions. The model takes into account the effects of different instability modes associated with the variations in Mach numbers. The model equation is based on the intermittency factor γ concept and couples with the well-known SST kω eddy-viscosity model in the solution procedures. The particular features of the present model approach are that: (1) the fluctuating kinetic energy k includes the non-turbulent, as well as turbulent fluctuations; (2) the proposed transport equation for the intermittency factor γ triggers the transition onset through a source term; (3) through the introduction of a new length scale normal to wall, the present model employs the local variables only avoiding the use of the integral parameters, like the boundary layer thickness δ, which are often cost-ineffective with the modern CFD methods; (4) in the fully turbulent region, the model retreats to SST model. This model is validated with a number of available experiments on boundary layer transition including the incompressible, supersonic and hypersonic flows past flat plates, straight/flared cones at zero incidences, etc. It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition with a reasonably wide range of Mach numbers.  相似文献   

11.
The forced transition of the boundary layer on an axisymmetric flared cone in Mach 6 flow is simulated by the method of spatial direct numerical simulation (DNS). The full effects of the flared afterbody are incorporated into the governing equations and boundary conditions; these effects include nonzero streamwise surface curvature, adverse streamwise pressure gradient, and decreasing boundary-layer edge Mach number. Transition is precipitated by periodic forcing at the computational inflow boundary with perturbations derived from parabolized stability equation (PSE) methodology and based, in part, on frequency spectra available from physical experiments. Significant qualitative differences are shown to exist between the present results and those obtained previously for a cone without afterbody flare. In both cases, the primary instability is of second-mode type; however, frequencies are much higher for the flared cone because of the decrease in boundary-layer thickness in the flared region. Moreover, Goertler modes, which are linearly stable for the straight cone, are unstable in regions of concave body flare. Reynolds stresses, which peak near the critical layer for the straight cone, exhibit peaks close to the wall for the flared cone. The cumulative effect appears to be that transition onset is shifted upstream for the flared cone. However, the length of the transition zone may possibly be greater because of the seemingly more gradual nature of the transition process on the flared cone. Received 20 March 1997 and accepted 21 May 1997  相似文献   

12.
The stability of hypersonic viscous gas flow in a shock layer in the neighborhood of a flat plate is considered. The stability of the velocity, temperature, density, and pressure profiles calculated on the basis of the complete viscous shock layer equations is investigated within the framework of the linear stability theory with allowance for the shock wave relations. The calculated perturbation growth rates and phase velocities are compared with the experimental data obtained by means of electron-beam fluorescence.  相似文献   

13.
The influence of local heating of the metal nose of a thermally insulated plate on the development of the plate boundary layer is experimentally investigated. The possibility of optimizing the flow past the leading edge and suppressing the turbulizing effect of its roughness by means of heating is demonstrated. Heating makes it possible to delay laminar-turbulent transition of the boundary layer considerably at comparatively low Reynolds numbers.  相似文献   

14.
An electron-beam fluorescence technique is used to investigate the properties of density waves in the shock layer on a flat plate placed in a hypersonic stream (Mx=21) at zero incidence; the Reynolds number based on the longitudinal coordinate and the freestream parameters is Rex=(2.7–3)·105. Transverse profiles of the mean density and the overall and spectral levels of the density fluctuations are obtained, the longitudinal and lateral phase velocities of the waves and the correlation scales are determined, and the longitudinal increments of the waves are derived. The data are compared with the experimental results obtained at Rex=(2.6–7)10·4.  相似文献   

15.
A systematic research on the buoyancy instability in the natural convection boundary layer was conducted, including the basic characteristics such as its spectral components, wave length and velocity, the location of its critical layer, and amplitude distributions of the triple independent eigenmodes with the linear instability theory, the growth rates of its temperature and velocity fluctuations and the corresponding neutral curves for the buoyancy eigenmode were also obtained. Results indicated that the neutral curve of the velocity fluctuation had a nose shape consistent with that obtained in the numerical calculation, but for the temperature fluctuation, a ring-like region could be measured at a lower Grashof number before the nose-shaped main portion of the neutral curve. The project supported by the National Natural Science Foundation of China (No. 10072003)  相似文献   

16.
The optimal control of infinitesimal flow disturbances experiencing the largest transient gain over a fixed time span, commonly termed “optimal perturbations,” is undertaken using a variational technique in two- and three-dimensional boundary layer flows. The cost function employed includes various energy metrics which can be weighted according to their perceived importance, simplifying the task of determining which terms are essential for a “good” control scheme. In the accelerated boundary layers investigated, disturbance kinetic energy can be typically reduced by about one order of magnitude. However, it seems impossible to suppress completely over the entire control interval; “good” control strategies still permit approximately an order magnitude growth over the initial energy at some point in the interval. It is shown that the control effort efficiently targets the physical mechanisms behind transient growth. Received 5 February 2001 and accepted 15 June 2001  相似文献   

17.
This paper reports results of experiments on controlling longitudinal structures in the boundary layer on a at plate. The longitudinal structures were generated by a controlled vortical disturbance of the external flow by means of a distributed susceptibility mechanism. It is shown that riblets reduce the intensity of both stationary and traveling disturbances. The linear and weakly linear stages in the development of disturbances in the boundary layer are the most favorable for the use of riblets.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 4, pp. 47–54, July–August, 2005.  相似文献   

18.
The influence of ultrasoundabsorbing coatings on stability of hypersonic boundary layers is considered. Two types of coatings were used in experiments: feltmetal with a random porous microstructure and a sheet perforated by blind cylindrical microchannels. The experiments were performed in a wind tunnel at a Mach number M = 5.95 on sharp cones with a 7° apex halfangle. Evolution of natural disturbances and artificially induced wave packets in the boundary layer was studied with the help of hotwire anemometry. Spatial characteristics of artificial disturbances were obtained. It is demonstrated that such coatings exert a stabilizing effect on secondmode disturbances.  相似文献   

19.
A boundary layer analysis is presented for the natural convection past an isothermal sphere in a Darcy porous medium saturated with a nanofluid. Numerical results for friction factor, surface heat transfer rate, and mass transfer rate have been presented for parametric variations of the buoyancy ratio parameter N r, Brownian motion parameter N b, thermophoresis parameter N t, and Lewis number L e. The dependency of the friction factor, surface heat transfer rate (Nusselt number), and mass transfer rate (Sherwood number) on these parameters has been discussed.  相似文献   

20.
考虑边界层影响时溢流坝动水压强分布规律的研究   总被引:1,自引:0,他引:1  
根据溢流坝反弧段水流运动的基本方程,考虑水流边界层的影响,在流线曲率同心圆假设条件下,得到了溢流坝反弧段水流压强计算的表达式。通过引入近壁薄流层要领和缓和过渡流线假设,在水工模型试验的基础上,得到了溢流坝反弧段水流流线曲率半径的计算公式,使反弧段离心力影响范围内的水流流线曲率光滑连续,从而得到反弧段水流压强分布规律的统一表达式,该表达式能够反映水流压强沿反弧法线方向及切线方向的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号