首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple “off-on fluorescence type” chemosensor 1 3-((2-(dimethylamino)ethyl)amino)-N-(quinolin-8-yl)propanamide has been synthesized for Zn2+. The receptor 1 comprises the quinoline moiety as fluorophore and the N,N-dimethylethane-1,2-diamine as a binding site. 1 showed a remarkable fluorescence enhancement in the presence of Zn2+ in aqueous solution. Importantly, the chemosensor 1 could be used to detect and quantify Zn2+ in water samples. In particular, this chemosensor could clearly distinguish Zn2+ from Cd2+. The binding properties of 1 with Zn2+ ions were investigated by UV-vis, fluorescence, electrospray ionization mass spectroscopy and 1H NMR titration.  相似文献   

2.
A nanosensor, based on 8-hydroxyquinoline functionalized graphene oxide, was developed for the fluorescence detection of Zn2+. It showed high selectivity and sensitivity for Zn2+ion in aqueous solution over other metal ions such as Li+, Na+, Ca2+, Mg2+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, Ni2+, Pb2+, Fe2+, Fe3+and Cr3+. Due to the linearity of the emission intensity toward Zn2+ concentration, fluorescent technique could be used for the detection of Zn2+ ion even at very low concentrations.  相似文献   

3.
A new fluorescent chemosensor 2-(2-thiophene)imidazo [4,5,f]-1,10-phenanthroline (L) was prepared and characterized. By adding univalent or divalent metal ions such as Na+, K+, Mg2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Ag+, Zn2+, Cd2+ and Hg2+ ions into the solution of L in DMF under buffered conditions with the working pH ranging from 7.0 to 8.0, we found that L could be used to detect K+ ratiometricly and it could also be applied to sense Co2+ with the phenomenon of fluorescence quenching of L. While the response behavior of L was not discernibly affected by other examined metal ions.  相似文献   

4.
The condensation product of phenylalanine and salicylaldehyde (L) was synthesised and characterised which was found to be selective fluorescent “off-on” sensor for Zn2+ ion with the detection limit 10?5 M. The sensor is free of interferences from metal ions - Na+, K+, Al3+, Mn2+, Co2+, Ni2+, Cu2+, Pb2+, Cd2+ and Hg2+. The Fluorescence and the UV/visible spectral data reveals a 1:1 interaction between the sensor and Zn2+ ion with binding constant 108. The DFT and TDDFT calculations confirm the structures of the sensor and the sensor-Zn2+ complex.  相似文献   

5.
A new bis(rhodamine)-based fluorescent probe 4 was synthesized, and it exhibited high selectivity for Fe(3+) over other commonly coexistent metal ions in both 50% ethanol and Tris-HCl buffer. Upon the addition of Fe(3+), the spirocyclic ring of 4 was opened and a significant enhancement of visible color and fluorescence in the range of 500-600 nm was observed.  相似文献   

6.
A new coumarin based Schiff-base chemosensor-(E)-7-(((8-hydroxyquinolin-2-yl)methylene) amino)-4-methyl-2H-chromen-2-one (H 11 L) was synthesized and evaluated as a colorimetric sensor for Fe3+ and fluorescence “turn on-off” response of Zn2+ and Cu2+ using absorption and fluorescence spectroscopy. Upon treatment with Fe3+ and Zn2+, the absorption intensity as well as the fluorescence emission intensity increases drastically compared to other common alkali, alkaline earth and transition metal ions, with a distinct color change which provide naked eye detection. Formation of 1:1 metal to ligand complex has been evaluated using Benesi-Hildebrand relation, Job’s plot analyses, 1H NMR titration as well as ESI-Mass spectral analysis. The complex solution of H 11 L with Zn2+ ion exhibited reversibility with EDTA and regenerate free ligand for further Zn2+ sensing. H 11 L exhibits two INHIBIT logic gates with two different chemical inputs (i) Zn2+ (IN1) and Cu2+ (IN2) and (ii) Zn2+ (IN1) and EDTA (IN2) and the emission as output. Again, an IMPLICATION logic gate is obtained with Cu2+ and EDTA as chemical inputs and emission as output mode. Both free ligand as well as metal-complexes was optimized using density functional theory to interpret spectral properties. The corresponding energy difference between HOMO-LUMO energy gap for H 11 L, H11L-Zn2+ and H11L-Cu2+ are 2.193, 1.834 and 0.172 eV, respectively.  相似文献   

7.
A fluorescent assay of Hg2+ in neutral aqueous solution was developed using N-[p-(dimethylamino)benzamido]-N′-phenylthiourea (1). 1’s fluorogenic chemodosimetric behaviors towards various metal ions were studied and a high sensitivity as well as selectivity was achieved for Hg2+. It was because of a strongly fluorescent 1,3,4-oxadiazoles which was produced by the Hg2+ promoted desulfurization reaction. The spectra of ESI mass and IR provided evidences for this reaction. According to fluorescence titration, a good linear relationship ranging from 1.0 × 10−7 to 2.0 × 10−5 mol l−1 was obtained with the limit of detection as 3.1 × 10−8 mol l−1. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Du J  Fan J  Peng X  Li H  Wang J  Sun S 《Journal of fluorescence》2008,18(5):919-924
A highly selective PET fluorescent sensor B1 for Hg2+ containing a BODIPY fluorophore and a NS2O2 penta-chelating receptor has been synthesized and characterized. Its absorption maximum wavelength (498 nm) and emission maximum wavelength (512 nm) are both in the visible range. The fluorescence quantum yields of the B1 and Hg2+-bound states of BHg1 are 0.008 and 0.58 in 70% aqueous ethanol solution, respectively. The pKa of 1.97 is the lowest in metal ions PET chemo sensors reported up till now as we know. Thus, B1 can detect the Hg2+ in a wide pH span, which indicates that it has more potential and further practical applications for biology and toxicology. Furthermore, BHg1 also displays response to some anions such as Cl(Br), , SCN and CH3COO, which is attributed to the significant coordinating ability of these anions to Hg2+.  相似文献   

9.
A new rhodamine-based reversible chemosensor (2) was synthesized, which exhibits high sensitivity and selectivity for Cu2+ but no significant response toward other competitive metal ions in aqueous solution. Upon the addition of Cu2+, the spirolactam ring of 2 was opened and the solution color changed from colorless to red. Strangely, an unexpected fluorescence quenching was observed, which is contrary to the fluorescence turn-on of the most rhodamine-based chemosensors. The likely novel sensing mechanism has been proposed.  相似文献   

10.
A novel fluorescent probe (NT) was developed by merging 2-hydrazinylbenzothiazole with 2-hydroxy-1-naphthaldehyde for the detection of Cd2+ and Cu2+. The probe alone is almost nonfluorescent due to the isomerization of C=N in the excited state. The addition of Cd2+ can cause an immediate strong green fluorescence owing to the suppression of C=N isomerization by Cd2+-coordination. Furthermore, NT gives a delayed turn-on fluorescence response to Cu2+ although it is a vigorous fluorescence quencher, which was thanks to the inhibition of the electron transfer between excited fluorophore and paramagnetic Cu2+ by sulfur donor. Based on fluorescence spectra and ESI-MS analysis, the binding modes between NT and Cd2+/Cu2+ were proposed.  相似文献   

11.
In the paper, a novel rhodamine6G based fluorescent chemosensor bearing 3-carbaldehyde chromone was designed and synthesized. According to the fluorescence behavior toward several metal ions, it showed highly selectivity and sensitivity to Zn(II) over other commonly coexistent metal ions (Cu(II), Cd(II), Hg(II), Mg(II), K(I), Pb(II), Fe(III) and Cr(III)) in aqueous environment (pH?=?7.4). Meanwhile the binding constant between Zn(II) and chemosensor achieved 6.21?×?1011 M?1 in aqueous media. Moreover, according to the Job plot, 1:1 stoichiometry between Zn(II) and sensor was deduced in aqueous media (pH?=?7.4). The good selectivity and sensitivity in aqueous media effectively enhanced the application value of the fluorescent chemosensor for Zn(II).  相似文献   

12.
In this paper, a new kind of colorimetric chemsensor aiming at detecting Cr3+ has been synthesized, and it is based on the “Off-On” effect of a rhodamine derivative. Comparing with other metal irons (Na+, K+, Ni2+, Hg2+, Fe3+, Mn2+, Co2+, Cd2+, Cu2+, Pb2+, Zn2+, Mg2+, Ba2+, Ag+, Fe2+, Ce3+), the chemsensor has a quick and accurate response to Cr3+ in H2O-EtOH solution (4/1, v/v). There is an obvious change in color, from colorless to bright pink when Cr3+ is detected. According to the fitting curve based on Benesi-Hildebrand equation and working curve of absorption strength in UV-vis spectrum, the binding pattern of Cr3+ and the rhodamine derivative follows a 1:1 stoichiometry. The chemsensor shows great potential in monitoring Cr3+ in the aqueous medium with high efficiency, which is supposed to complete the recognition in the minimum as 5.2?×?10?7 mol/L within 5 min.  相似文献   

13.
A G-quadruplex-based fluorescent biosensor for highly sensitive detection of barium ion (Ba2+) was constructed for the first time. In the absence of Ba2+, the G-quadruplex-specific fluorescence ligand N-methyl mesoporphyrin IX (NMM) remained weakly fluorescent when coexisted with a single-stranded G-quadruplex sequence AGRO100. Upon addition of Ba2+, AGRO100 was folded into G-quadruplex structures with the aid of Ba2+, which bound with NMM by stacking forces and significantly enhanced its fluorescence. The maximum fluorescence intensity of NMM was increased by ca. 22-fold in response to 1 μM Ba2+. This simple method exhibites a good linear relationship in the range of 0–600 nM with the detection limit of 4 nM. The detection method is turn-on, fast, economic, high in signal-to-noise ratio and free of participation of toxic organic solvents, demonstrating its great potential for on-site and real-time Ba2+ detection.  相似文献   

14.
Based on resonance energy transfer (FRET) from dansyl to rhodamine 101, a new fluorescent probe (compound 1) containing rhodamine 101 and a dansyl unit was synthesized for detecting Hg2+ through ratiometric sensing in DMSO aqueous solutions. This probe shows a fast, reversible and selective response toward Hg2+ in a wide pH range. Hg2+ induced ring-opening reactions of the spirolactam rhodamine moiety of 1, leading to the formation of fluorescent derivatives that can serve as the FRET acceptors. Very large stokes shift (220 nm) was observed in this case. About 97-fold increase in fluorescence intensity ratio was observed upon its binding with Hg2+.  相似文献   

15.
Li L  She NF  Fei Z  So PK  Wang YZ  Cao LP  Wu AX  Yao ZP 《Journal of fluorescence》2011,21(3):1103-1110
In this paper, we report the synthesis, characterization and Fe3+-sensing properties of a series of new artificial fluorescent molecular clips, and structure of clip 1 is confirmed by X-ray crystallography. All these molecular clips had the ability to bind and sense Fe3+ selectively through decrease fluorescence responses in THF-MeOH-Water. Fluorimetric titration experiment indicated that the quenching of these compounds’ fluorescence upon Fe3+ probably arises from the electron/energy transfer between Fe3+ and the excited chemosensors. The limit of detection, linear concentration range and selectivity of the fluorescent molecular clips were evaluated in this study as well.  相似文献   

16.
Copper being an essential nutrient; also pose a risk for human health in excessive amount. A simple and convenient method for the detection of trace amount of copper was employed using an optical probe R1 based on Schiff base. The probe was synthesized by Schiff base condensation of benzyl amine and 2-hydroxy-1-napthaldehyde and characterized by single X-ray diffraction, 1H NMR and FTIR. By screening its fluorescence response in a mixture of DMSO and H2O (20:80, v/v) R1 displayed a pronounced enhancement in fluorescence only upon treatment with copper. Other examined metal ions such as alkali, alkaline and transition had no influence. Within a wide pH range 5–12 R1 could selectively detect copper by interrupting ICT mechanism that results in CHEF. From Job’s plot analysis a 2:1 binding stoichiometry was revealed. The fluorescence response was linear in the range 1–10?×?10?9 M with detection limit 30?×?10?9 M. Association constant was determined as 1?×?1011 M?2 by Benesi-Hilderbrand plot. As a fast responsive probe it possesses good reproducibility and was employed for detection of copper in different water samples.  相似文献   

17.
In this study, the coumarin-derived schiff bases (HL1 and HL2) have been designed and synthesized. Upon the addition of Zn2+, both of them show significant fluorescence enhancement owing to inhibits PET and ESIPT process respectively. However, the receptor HL2 response toward Cd2+, Mg2+, Ba2+, Ca2+ besides Zn2+ and exhibits fluorescence enhancement but not enough to detection of the concentration levels of Zn2+.  相似文献   

18.
Neutron transition densities for the 2 + -8 + levels in 90Zr were extracted in the process of analyzing scattering at 400 MeV. They were compared with the calculated neutron transition densities and with the experimental proton transition densities. Radial distributions of the experimental neutron and proton transition densities for each state were found to be different.Received: 9 January 2004, Revised: 4 April 2004, Published online: 14 September 2004PACS: 25.40.Ep Inelastic proton scattering - 21.10.-k Properties of nuclei; nuclear energy levels  相似文献   

19.
We have rationally constructed a novel ratiometric and near-infrared Cu2+ fluorescent probe based on a tricarbocyanine chromophore. The new probe NIR-Cu showed a ratiometric fluorescent response to Cu2+ with a large emission wavelength shift (up to 142 nm) in the far-red to near-infrared region. The probe also displayed a large variation in the fluorescence ratio (I636/I778) to Cu2+ species with high sensitivity and selectivity. Additionally, the developed probe NIR-Cu was suitable for fluorescence imaging of Cu2+ in living cells and mice.  相似文献   

20.
A novel compound 1 containing rhodamine B and macrocyclic groups has been synthesized. It was found to exhibit a reversible colorimetric response, high selectivity and sensitivity for Cu(II) ion over other commonly coexistent metal ions. The colorimetric and fluorescent response to Cu(II) can be conveniently detected even by the naked eye, which provided a facile method for visual detection of Cu(II). Approximate 71 and 53-fold enhancement in the absorbance at about 557 nm and fluorescence intensity at about 580 nm were estimated when Cu(II) ion was added to the aqueous media of compound 1. The detection limit was calculated to be 2 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号