首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombination radiation due to an exciton bound to neutral donors and neutral acceptors in high purity vapor phase epitaxial GaAs is investigated using high resolution photoluminescence spectroscopy at liquid helium temperatures. It is found that those samples which show the presence of germanium acceptors also exhibit a strong residual donor referred to in the literature as X3. Samples containing carbon acceptors however, do not show the presence of X3. In the past X3 has been identified by some groups as due to carbon on the gallium site. The work presented here sugests that the X3 donor is associated with germanium. This identification of the X3 donor is in agreement with a recent assignment based on the far infrared study of neutron transmuted GaAs.  相似文献   

2.
Tunneling transport through a one-barrier GaAs/(AlGa)As/GaAs heterostructure containing self-assembled InAs quantum dots has been investigated at low temperatures. An anomalous increase in the tunneling current through quantum dots in magnetic fields oriented both parallel and perpendicular to the current is observed. This increase is a manifestation of the Fermi-edge singularity in the current as a result of the interaction of a tunneling electron with the electron gas in the emitter.  相似文献   

3.
The results of the investigation of tunneling transport through a GaAs/(AlGa)As/GaAs single-barrier heterostructure containing InAs self-assembled quantum dots at low temperatures are reported. An anomalous increase in the tunneling current through the quantum dots has been observed in the presence of a magnetic field both parallel and perpendicular to the current. This increase is a manifestation of a Fermi-edge singularity appearing in the current due to the interaction of a tunneling electron with the electron gas in an emitter.  相似文献   

4.
We report the observation of strong Fermi-edge singularities in the photoluminescence spectrum of strongly-confined, modulation-doped GaAs v-groove quantum wires. The behaviour of the singularity has been investigated at high excitation intensity, and both lattice and electrical heating. The latter produces a strong reduction of the singularity due to Fermi surface smearing, whereas, increased photoexcitation produces complex electron–hole correlation effects.  相似文献   

5.
(Ga,In)(N,As) lattice matched to GaAs with a band gap of 1 eV is employed as active material in high-efficiency III–V solar cells. Te-doped Ga0.934In0.066N0.023As0.977 layers were grown by metal-organic vapor-phase epitaxy on (1 0 0) GaAs. The samples were highly doped n-type with carrier concentrations ranging from about 1017–1019 cm−3. Pieces of the samples were hydrogenated with H-doses of 1018 ion/cm2. The optical and electrical properties of the samples before and after hydrogenation were studied by low-temperature photoluminescence and magnetotransport. In undoped samples hydrogen is known to form N–H complexes which strongly reduce the local perturbation of the lattice due to nitrogen and thus reverse the N-induced global changes of the band structure. Combined analysis of photoluminescence and transport measurements on Te-doped samples, however, indicates a competition between N–H formation and passivation of the Te donor favoring the latter. Hardly any band structure changes due to hydrogenation are observed in these Te-doped samples, instead a strong reduction of the free-carrier concentration is observed after hydrogenation.  相似文献   

6.
Electron spin resonance of donors in GaAs has been observed through optical orientation and detection of spins. GaAs samples doped below the metal-insulator transition were studied. The resonance linewidth increases as the concentration of donors is reduced, due to the dependence of the T2* spin lifetime on correlation effects between donor electrons. The linewidth of the lowest doped sample (3×1014 cm−3) corresponds to a T2* of 5 ns, which is the value predicted for electrons in the non-interacting, localized limit. The nuclei need to be simultaneously depolarized in order to make the electron resonance observable.  相似文献   

7.
In this paper we review briefly the use of high resolution photoluminescence to study the behavior of shallow impurity states in compound semiconductors. As an illustration we focus our review on GaAs. The binding energies of the ground state and of several low-lying excited states of the impurity centers are determined by studying the radiative transitions associated with excitons bound to neutral donors or acceptors. The difference between the binding energies of different donors in GaAs is rather small. Thus to resolve transitions associated with different chemical donors a magnetic field is used. This has the effect of sharpening the transitions as well as increasing the separation between them. One can identify donors in samples with total impurity concentrations as high as 5X1015/cm3. The binding energies of different chemical acceptors in GaAs are much higher. Thus the radiative transitions associated with excitons bound to neutral acceptors can be resolved in zero magnetic field. Energy levels of shallow donors and acceptors in GaAs are reviewed.  相似文献   

8.
This paper attempts to realize unpinned high-k insulator-semiconductor interfaces on air-exposed GaAs and In0.53Ga0.47As by using the Si interface control layer (Si ICL). Al2O3 was deposited by ex situ atomic layer deposition (ALD) as the high-k insulator. By applying an optimal chemical treatment using HF acid combined with subsequent thermal cleaning below 500 °C in UHV, interface bonding configurations similar to those by in situ UHV process were achieved both for GaAs and InGaAs after MBE growth of the Si ICL with no trace of residual native oxide components. As compared with the MIS structures without Si ICL, insertion of Si ICL improved the electrical interface quality, a great deal both for GaAs and InGaAs, reducing frequency dispersion of capacitance, hysteresis effects and interface state density (Dit). A minimum value of Dit of 2 × 1011 eV−1 cm−2 was achieved both for GaAs and InGaAs. However, the range of bias-induced surface potential excursion within the band gap was different, making formation of electron layer by surface inversion possible in InGaAs, but not possible in GaAs. The difference was explained by the disorder induced gap state (DIGS) model.  相似文献   

9.
We report the observation of a strong Fermi-edge singularity (FES), with the complete suppression of the band-edge peak, in the photoluminescence spectra of ultra-high-quality modulation-doped AlGaAs/GaAs quantum wires (QWRs). We find that the FES effect is very sensitive to the Fermi energy. The strong FES is observed only in QWRs having a Fermi energy of the order of a few meV, and disappears almost completely when the Fermi energy exceeds 10 meV. These results are expected to spark new research activities, both experimentally and theoretically, on many-body effects in one-dimensional electron gas.  相似文献   

10.
The bilayer InAs/In0.36Ga0.64As/GaAs(311B) quantum dots (QDs), including one InAs buried quantum dot (BQD) layer and the other InAs surface quantum dot (SQD) layer, have been grown by molecular beam epitaxy (MBE). The optical properties of these three samples have been studied by the piezoreflectance (PzR) spectroscopy. The PzR spectra do not exhibit only the optical transitions originated from the InAs BQDs, but the features originated from the InAs SQDs. After the InAs SQDs have been removed chemically, those optical transitions from InAs SQDs have been demonstrated clearly by investigating the PzR spectra of the residual InAs BQDs in these samples. The great redshift of these interband transitions of InAs SQDs has been well discussed. Due to the suitable InAs SQD sizes and the thickness of In0.36Ga0.64As layer, the interband transition of InAs SQDs has been shifted to ∼1.55 μm at 77 K.  相似文献   

11.
The near band edge photoluminescence (–870 nm) at 300 K of semi-insulating and p-type GaAs, a potentially useful tool for GaAs wafer mapping, decreases with time under illumination from the 514 nm line of an Ar+ laser. The photoluminescence bleaching has been studied by optical and photo Hall-effect techniques. It recovers only partially on a time scale of days and does not show a distinct intensity threshold behavior. From lifetime measurements and experiments on samples covered with epitaxial layers of GaAs x P1–x or Si3N4 it is concluded that creation of surface recombination centers causes the PL bleaching.  相似文献   

12.
PhotoLuminescence (PL) measurement techniques have been used to investigate on MOCVD grown P-doped GaAs/Al x Ga1–x As(x = 0.3) Multiple Quantum Wells (MQW). The spectra reveal extrinsic luminescence characteristics of e-A0 transitions for interface and centre of well acceptors in addition to both bound and free exciton emissions.  相似文献   

13.
We performed two-color spectroscopy of the (4s2) 1S0 → (4s4p) 1P1 → (4p2) 1D2 calcium atomic transition and observed velocity-selective optical pumping in a calcium hollow cathode lamp by means of optogalvanic detection. The optical pumping signature in optogalvanic detection is compared to that of fluorescence and transmission detections. The optogalvanic technique is found to be a very sensitive method of detecting optical pumping and could be used in distinguishing optical pumping from electromagnetically induced transparency.  相似文献   

14.
Scintillator materials are widely used in X-ray medical imaging detector applications, coupled with available photoreceptors like radiographic film or photoreceptors suitable for digital imaging like a-Si, charge-coupled devises (CCD), complementary metal-oxide-semiconductors (CMOS) and GaAs). In addition, scintillators can be utilized in non-medical imaging detectors such as industrial detectors for non-destructive testing (NDT) and detectors used for security purposes (i.e. airport luggage control). Image quality and dose burden in the above applications is associated with the amount of optical photons escaping the scintillator as well as the amount of optical photons captured by the photoreceptor. The former is characterized by the scintillator efficiency and the latter by the spectral matching between the emission spectrum of the scintillator and the spectral response of the photoreceptor. Recently, a scintillator material, europium-activated lutetium oxide (Lu2O3:Eu), has shown improved scintillating properties. Lu2O3:Eu samples of compact nanocrystalline non-agglomerated powder were developed in our laboratory using homogeneous precipitation from a water-toluene solution in the presence of polyvinyl alcohol as a surfactant. In order to test their light-emission properties, experimental measurements under the excitation of X-ray spectra with X-ray tube voltages between 50 kVp and 140 kVp were performed. This range of applied voltages is appropriate for X-ray radiology, NDT and security applications. Lu2O3:Eu was evaluated with respect to output yield and spectral compatibility of digital imaging photoreceptors (CCD-based, CMOS-based, amorphous silicon a:Si flat panels, ES20 and GaAs). High light yield and spectral compatibility increase the performance of the medical detector and reduce the dose burden to the personnel involved. In addition a theoretical model was used to determine the values for the Lu2O3:Eu optical photon light propagation parameters. The inverse diffusion length was found to be equal to 33 cm2/g. In addition Lu2O3:Eu was found to match well with several photoreceptors capable of digital imaging (i.e. GaAs).  相似文献   

15.
OH and H3O+ species in hydrates and simple oxides are rather well characterised from their IR, Raman and inelastic neutron points of view. For the H+ (H2O) species in solid state the variability is well established and assignment remains discussed. The question of the vibrational signature of isolated proton (e.g. the ionic proton, a proton sharing its interaction with more than two acceptors) and its dynamic nature (proton gas, polaron,…) is open. H+‐containing modified perovskites A(Ba,Sr,…) B(Zr,Ce,Ti,…) O3 are potential ceramic membranes for fuel cell and medium temperature water electrolysis (300–800 °C). Comparison studies of the protonated and non‐protonated lanthanide/rare earth‐modified perovskites of type Ba(Sr)Zr(Ti)O3 as well as Al‐modified BaTiO3 show that a broad component centred at 2500 cm−1 is observed after ‘proton insertion’. Its intensity is correlated to the protonic species content as well as to the conductivity of the materials. The mixed nature of this feature is discussed: fluorescence related to the dangling bonds, A, B, C bands or new phenomena related to the ionic protons and associated electronic defect. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The influence of layer-by-layer temperature and substrate rotation on the optical property and uniformity of self-assembled InAs/In0.2Ga0.8As/GaAs quantum dots (QDs) gown with an As2 source was investigated. An improvement in the optical property of QDs was obtained by the precise control and optimization of growth temperature utilized for each layer, i.e., InAs QDs, InGaAs quantum wells, GaAs barriers and AlGaAs layers, respectively. By using a substrate rotation, the QD density increased from ∼1.4×1010 to ∼3.2×1010 cm−2 and its size also slightly increased, indicating a good quality of QDs. It is found that the use of an appropriate substrate rotation during growth improves the room-temperature (RT) optical property and uniformity of QDs across the wafer. For the QD sample with a substrate rotation of 6 rpm, the RT photoluminescence (PL) intensity is much higher and the standard deviation of RT-PL full-width at half-maximum is decreased by 35% compared to that grown without substrate rotation.  相似文献   

17.
The electrical conductivity, Hall effect, ionization energy, and defect concentration of GaAs samples subjected to various forms of heat treatment were studied. The original material comprised single crystals grown by the Bridgman and Czochralski methods with electron concentrations of 2·1015–7·1017 cm–3. The ionization energy and defect concentration were calculated with an electronic computer. The thermal conversion of GaAs was attributed to traces of copper, lattice defects, and residual impurities. The mobility varied in a complicated manner with the temperature of heat treatment in GaAs samples retaining their original n-type conductivity.Translated from Izvestiya VU Z, Fizika, No. 3, pp. 69–76, March, 1973.  相似文献   

18.
Using quantitative high-resolution transmission electron microscopy we studied the chemical morphology of wetting layers in In x Ga1? x As/GaAs quantum dot structures which were optimized for applications to optical devices operating around 1.3?µm. The samples are grown by low-pressure metal–organic chemical vapour deposition on GaAs substrates. The In concentration profiles of the wetting layers are evaluated with the composition evaluation by lattice fringe analysis method. The profiles reveal a clear signature of segregation. A fit of the profiles with the Muraki et al. model for segregation reveals a segregation efficiency R?=?0.65?±?0.05 at the growth temperature of 550°C, which is significantly lower than segregation efficiencies observed in samples grown by molecular beam epitaxy at similar temperatures.  相似文献   

19.
Summary The temperature dependence of the emission intensity due to conduction band-to-neutral acceptor recombination (e-A0) is investigated in a GaAs/Ga0.7Al0.3As single quantum well. It is shown that the thermal quenching of the (e-A0) emission peak is not monotonous with temperature. The increase of the (e-A0) emission intensity up to about 30 K is interpreted as a consequence of the ionization of shallow donors, while the decrease in emission intensity at higher temperature is due to ionization of neutral acceptors.  相似文献   

20.
The incorporation of Sn into LPE GaAs was studied as a function of the atomic fractionx Sn l of Sn in the liquid (1.6×10−4x Sn l ≤0.54), the growth temperatureT K and the cooling rate α. The diffusion coefficient of As in Ga for moderate Sn-doping was deduced from the growth velocities to beD As (760° C)=(3.3±1.0)×10−5 cm2/s. The epitaxial layers were analyzed after van der Pauw with special emphasis on the sources of experimental error. With the aid of current mobility theories the concentrations of the ionized donors and acceptors were derived. From their dependence onx Sn l , on α and onT K combined with the Schottky-barrier model of Sn incorporation it can be concluded that the melt and the growing crystal surface were in thermal equilibrium. The diffusion coefficient of Sn in GaAs is about 8×10−14 cm2/s at 760° C. The distribution coefficient for Sn increases from 4.4×10−5 to 12.3×10−5 in the temperature range from 690 to 800° C. The total Sn incorporationx Sn s was measured using the atomic absorption spectroscopy for the first time down tox Sn s =1017/cm3. From these data it can be concluded that up tox Sn l =0.54 the dopant Sn is incorporated as donor and as acceptor only and that within the experimental scatter there is no indication of incorporation as a neutral species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号