首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy migration between tryptophan residues has been experimentally demonstrated in self-assembled peptide tapes. Each peptide contains 11 amino acids with a Trp at position 6. The peptide self-assembly is pH-sensitive and forms amphiphilic tapes, which further stack in ribbons (double tapes) and fibrils in water depending on the concentration. Fluorescence spectra, quenching, and anisotropy experiments showed that when the pH is lowered from 9 to 2, the peptide self-assembly buries the tryptophan in a hydrophobic and restricted environment in the interior of stable ribbons as expected on the basis of the peptide design. These fluorescence data support directly and for the first time the presence of such ribbons which are characterized by a highly packed and stable hydrophobic interior. In common with Trp in many proteins, fluorescence lifetimes are nonexponential, but the average lifetime is shorter at low pH, possibly due to quenching with neighboring Phe residues. Unexpectedly, time-resolved fluorescence anisotropy does not change significantly with self-assembly when in water. In highly viscous sucrose-water mixtures, the anisotropy decay at low pH was largely unchanged compared to that in water, whereas at high pH, the anisotropy decay increased significantly. We concluded that depolarization at low pH was not due to rotational diffusion but mainly due to energy migration between adjacent tryptophan residues. This was supported by a master equation kinetic model of Trp-Trp energy migration, which showed that the simulated and experimental results are in good agreement, although on average only three Trp residues were visited before emission.  相似文献   

2.
Time-resolved fluorescence of single tryptophan proteins have demonstrated the complexity of protein dynamic and protein structure. In particular, for some single tryptophan proteins, their fluorescence decay is best described by a distribution of fluorescence lifetimes rather than one or two lifetimes. Such results have provided further confirmation that the protein system is one which fluctuates between a hierarchy of many conformational substates. With this scenario as a theoretical framework, the correlations between protein dynamic and structure are investigated by studying the time-resolved fluorescence and anisotropy decay of holo and apo human superoxide dismutase (HSOD) at different denaturant concentrations. As a function of guanidine hydrochloride (GdHCl), the width of the fluorescence lifetime distribution of HSOD displays a maximum which is not coincident with the fully denatured form of HSOD at 6.5M GdHCl. Furthermore, the width of the fluorescence lifetime distribution for the fully denatured forms of holo and apo HSOD is greater than that of the native forms.  相似文献   

3.
Abstract— Steady-state and multifrequency phase fluorometry were used to characterize the conformational state and conformational dynamics of recombinant tick anticoagulant peptide ( Ornithodorus moubata ) (TAP). The TAP contains two tryptophan residues at positions 11 and 37. The fluorescence emission varies sigmoidally as a function of pH with a pKa of 6.01 ± 0.07. This pH dependency suggests that tryptophan fluorescence is quenched by His43 at low pH. This is confirmed by modification of the his-tidine with diethylpyrocarbonate. At pH 9 the fluorescence decay is well described by a sum of three exponentials (0.52,1.9 and 5.4 ns), which decrease all three at pH 4 (0.25, 1.61 and 4.4 ns). From the reactivity of the fluorescence lifetimes toward N -bromosuccinimide and from the calculation of the accessibility we can attribute the long lifetime to Trpll, the short one to Trp37 and the middle one to both. The anisotropy decay was resolved into two components of 3.85 ns and 0.27 ns at pH 4 and 4.5 ns and 0.6 ns at pH 9. The long anisotropy decay time corresponds to the rotational correlation time of the protein, the short one to local mobility of the tryptophan residues.  相似文献   

4.
In the last decades, considerable progress has been made in the analysis of the fluorescence decay of proteins with more than one tryptophan. The construction of single tryptophan containing proteins has shown that the lifetimes of the wild type proteins are often the linear combinations of the family lifetimes of the contributing tryptophan residues. Additivity is not followed when energy transfer takes place among tryptophan residues or when the structure of the remaining protein is altered upon the modification. Progress has also been made in the interpretation of the value of the lifetime and the linkage with the immediate environment. Probably all the irreversible processes leading to return to the ground state have been catalogued and their rate constants are documented. Also, the process of electron transfer to the peptide carbonyl is becoming more and more documented and is linked to the rotameric state of tryptophan. Reversible excited state processes are also being considered, including reversible interconversions between rotamers. Interesting information about tryptophan and its environment comes also from anisotropy measurements for proteins in the native, the denatured and the molten globule states. Alterations of protein fluorescence due to the effects of ligand binding or side chain modifications can be analyzed via the ratio of the quantum yields of the modified protein and the reference state. Using the ratio of quantum yields and the (amplitude weighted) average lifetime, three factors can be identified: (1) a change in the apparent radiative rate constant reflecting either static quenching or an intrinsic change in the radiative properties; (2) a change in dynamic quenching; and (3) a change in the balance of the populations of the microstates or local static quenching.  相似文献   

5.
Pulse nanosecond fluorescence anisotropy decay has been used to study the mobility of tryptophan residues within fungal lipase fromHumicola lanuginosa. The decay of emission anisotropy of protein in native, inhibited and mutated form has been investigated in buffered water and 50% v/v glycerol solutions. The rotational motions of the lipase were analyzed in terms of two different kinetic models. It was found that the fluorescence emission anisotropy decay can best be desribed with two rotational correlation times: 0.63 and 5.45 ns in water and 0.98 and 10.70 ns and in 50% v/v glycerol solution. Using the same experimental conditions the decay of inhibited and mutatedH. lanuginosa lipase showed a similar biexponential character. These results are interpreted in terms of local or segmental motion arising from a mass of about 1083 daltons which corresponds to the ‘lid’-helix fragment of the enzyme.  相似文献   

6.
使用时间分辨荧光方法,结合紫外吸收光谱和稳态荧光光谱技术,测量了LicT蛋白中色氨酸残基的荧光动力学特性,进而对LicT蛋白质激活前后的局部微环境和结构变化进行了研究。LicT蛋白质的激活态使得有关糖类利用的基因转录过程继续进行,促进机体新陈代谢。通过色氨酸残基的荧光发射和寿命的差异判断出激活型蛋白AC 141和野生型蛋白Q 22不同的结构性质和微环境差异。在此基础上,通过衰减相关光谱(DAS)和时间分辨发射光谱(TRES)阐释了两种蛋白色氨酸残基和溶剂的相互作用,说明了激活型AC 141的比野生型Q 22的结构更加紧密。此外,TRES还说明了蛋白中的色氨酸残基存在连续光谱弛豫过程。各向异性结果则对残基和整个蛋白的构象运动进行了阐述,说明了色氨酸残基在蛋白质体系内有独立的局部运动,且在激活型蛋白中该运动更加强烈。  相似文献   

7.
Abstract— The effect of 300 nm irradiation on the sulfhydryl groups of calf lens a-crystallin has been investigated by using specific, covalently bound fluorescent sulfhydryl probes 4–(N-iodoacetoxy)ethyl-N-methylamino-7-n-itrobenz-2-o-xa-1,3-d-iazole (IANBD), N-iodoacetyl-N'-(5-s-ulfo-l-naphthyl) ethylene-diamine (1,5 IAEDANS) and 5-i-odoacetamidofluorescein (IAF). The decrease in tryptophan fluorescence with time of irradiation of a-crystallin, is accompanied by a decrease in the fluorescence of the hydrophobic sulfhydryl label IANBD. In addition, the fluorescence of the surface-sulfhydryl label IAF increased in the irradiated a-crystallin. These results indicate that the sulfhydryl groups are in a more exposed (hydrophilic) environment in the irradiated protein than in the control, possibly because of partial unfolding of the protein. This result is confirmed by fluorescence lifetime measurements with IAEDANS. The decay curve of IAEDANS-α-crystallin has a major lifetime of 15.7 ns and a minor one of 24.6 ns. Upon irradiation, the lifetime of the major component decreases to 10.2 ns and that of the minor component to 21.7 ns. Denatured IAEDANS-α-crystallin has a single lifetime of 10.4 ns. These results show that the photoinduced damage to the tryptophan residues of α-crystallin alters the environment of the sulfhydryl groups and induces a change in the tertiary structure of the protein. Proximity of the cysteine residues to tryptophan in the tertiary structure of the protein may be an important determinant of their susceptibility to photoinduced change.  相似文献   

8.
On spectral relaxation in proteins   总被引:5,自引:0,他引:5  
During the past several years there has been debate about the origins of nonexponential intensity decays of intrinsic tryptophan (trp) fluorescence of proteins, especially for single tryptophan proteins (STP). In this review we summarize the data from diverse sources suggesting that time-dependent spectral relaxation is a ubiquitous feature of protein fluorescence. For most proteins, the observations from numerous laboratories have shown that for trp residues in proteins (1) the mean decay times increase with increasing observation wavelength; (2) decay associated spectra generally show longer decay times for the longer wavelength components; and (3) collisional quenching of proteins usually results in emission spectral shifts to shorter wavelengths. Additional evidence for spectral relaxation comes from the time-resolved emission spectra that usually shows time-dependent shifts to longer wavelengths. These overall observations are consistent with spectral relaxation in proteins occurring on a subnanosecond timescale. These results suggest that spectral relaxation is a significant if not dominant source of nonexponential decay in STP, and should be considered in any interpretation of nonexponential decay of intrinsic protein fluorescence.  相似文献   

9.
The solvatochromic fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS) has been used to study the hydrophobicity and conformational dynamics of lecithin:cholesterol acyltransferase (LCAT). The ANS to LCAT binding constant was estimated from titrations with ANS, keeping a constant concentration of LCAT (2 microM). Apparent binding constant was found to be dependent on the excitation. For the direct excitation of ANS at 375 nm the binding constant was 4.7 microM(-1) and for UV excitation at 295 nm was 3.2 microM(-1). In the later case, not only ANS but also tryptophan (Trp) residues of LCAT is being excited. Fluorescence spectra and intensity decays show an efficient energy transfer from tryptophan residues to ANS. The apparent distance from Trp donor to ANS acceptor, estimated from the changes in donor lifetime was about 3 nm and depends on the ANS concentration. Steady-state and time-resolved fluorescence emission and anisotropies have been characterized. The lifetime of ANS bound to LCAT was above 16 ns which is characteristic for it being in a hydrophobic environment. The ANS labeled LCAT fluorescence anisotropy decay revealed the correlation time of 42 ns with a weak residual motion of 2.8 ns. These characteristics of ANS labeled LCAT fluorescence show that ANS is an excellent probe to study conformational changes of LCAT protein and its interactions with other macromolecules.  相似文献   

10.
Tryptophan, when in a protein, typically shows multiexponential fluorescence decay kinetics. Complex kinetics prevents a straightforward interpretation of time-resolved fluorescence protein data, particularly in anisotropy studies or if the effect of a dynamic quencher or a resonance energy transfer (RET) acceptor is investigated. Here, time-resolved fluorescence data are presented of an isosteric tryptophan analogue, 5-fluorotryptophan, which when biosynthetically incorporated in proteins shows monoexponential decay kinetics. Data are presented indicating that the presence of a fluoro atom at the 5-position suppresses the electron transfer rate from the excited indole moiety to the peptide bond. This process has been related to the multiexponential fluorescence decay of tryptophan in proteins. The monoexponential decay of 5-fluorotryptophan makes it possible to measure simultaneously multiple distances between 5-fluorotryptophan and a RET acceptor. We demonstrate that for an oligomeric protein, consisting of two single-tryptophan-containing subunits, the individual distances between 5-fluorotryptophan and the single substrate binding site can be resolved using a substrate harboring a RET acceptor.  相似文献   

11.
Steady-state and time-resolved fluorescence measurements on each of five native tryptophan residues in full-length and truncated variants of E. coli outer-membrane protein A (OmpA) have been made in folded and denatured states. Tryptophan singlet excited-state lifetimes are multiexponential and vary among the residues. In addition, substantial increases in excited-state lifetimes accompany OmpA folding, with longer lifetimes in micelles than in phospholipid bilayers. This finding suggests that the Trp environments of OmpA folded in micelles and phospholipid bilayers are different. Measurements of Trp fluorescence decay kinetics with full-length OmpA folded in brominated lipid vesicles reveal that W102 is the most distant fluorophore from the hydrocarbon core, while W7 is the closest. Steady-state and time-resolved polarized fluorescence measurements indicate reduced Trp mobility when OmpA is folded in a micelle, and even lower mobility when the protein is folded in a bilayer. The fluorescence properties of truncated OmpA, in which the soluble periplasmic domain is removed, only modestly differ from those of the full-length form, suggesting similar folded structures for the two forms under these conditions.  相似文献   

12.
Abstract— Phosphorescence measurements of rhodopsin in bovine rod disk membranes were made to study changes in protein conformation on bleaching by probing the environment of tryptophan and tyrosine residues of the protein. Bleaching decreased the tyrosine phosphorescence by about 25% and significantly affected the amplitude of triplet decay when rhodopsin was excited at 280 nm, where both tyrosine and tryptophan absorb. Computer analysis using one or two exponential model functions showed the presence of two components in the decay curve at 410 nm—one with a lifetime of 2.2 s, the other with a lifetime of 4.8 s>—which are typical of tyrosine and tryptophan respectively. When the rod outer segment sample was bleached, there was a significant decrease in the amplitude of the tyrosine component. However, the lifetime values of the two components did not change. Analyses of the fluorescence spectra of dark and bleached membranes at different excitation wavelengths and the phosphorescence change on bleaching suggest energy transfer between tyrosine and tryptophan singlet states, which may result from a conformational change of the opsin moiety on bleaching.  相似文献   

13.
Fluorescence quenching and time-resolved fluorescence studies have been performed on the galactose-specific lectin purified from snake gourd (Trichosanthes anguina) seeds, in order to investigate the tryptophan accessibility and environment in the native protein and in the presence of bound ligand. Estimation of the tryptophan content by N-bromosuccinimide modification in the presence of 8 M urea yields four residues per dimeric molecule. The emission spectrum of native lectin in the absence as well as in the presence of 50 mM methyl--d-galatopyranoside (MeGal) shows a maximum around 331 nm, which shifts to 361.8 nm upon reduction of the disulfide bonds and denaturation with 8 M urea, indicating that all four tryptophan residues in the native state of this protein are in a hydrophobic environment. The extent of quenching that is observed is highest with acrylamide, intermediate with succinimide, and low with Cs+ and I, further supporting the idea that the tryptophan residues are predominantly buried in the hydrophobic core of the protein. The presence of MeGal (50 mM) affects the quenching only marginally. Time-resolved fluorescence measurements yield bi-exponential decay curves with lifetimes of 1.45 and 4.99 ns in the absence of sugar, and 1.36 and 4.8 ns in its presence. These results suggest that the tryptophan residues are not directly involved in the saccharide binding activity of the T. anguina lectin. Of the four quenchers employed in this study, the cationic quencher, Cs+, is found to be a very sensitive probe for the tryptophan environment of this lectin and may be useful in investigating the environment of partially buried tryptophan residues and unfolding processes in other proteins as well.  相似文献   

14.
喹诺酮药物与血清蛋白相互作用的三维荧光光谱研究   总被引:3,自引:1,他引:2  
应用三维荧光光谱和三维荧光偏振光谱研究了数种喹诺酮药物与牛血清白蛋白(BSA)分子间的相互作用。由三维荧光(偏振)光谱得到的指纹信息说明了喹诺酮药物与BSA结合反应对BSA分子构象的影响。通过研究喹诺酮药物发生相互作用前后BSA荧光偏振度及各向异性的变化,定量说明了喹诺酮药物-BSA所发生的结合反应。  相似文献   

15.
The excitation and emission spectra have been determined for the fluorescence from trypto-phan residues in dry keratin. The fluorescence decay was also measured and shown to be a single exponential with a rather long lifetime of 6.9 ns. It is suggested that the emission takes place from a state formed by interaction between the 1La state of the tryptophan residues and neighbouring polar or polarizable groups in the protein. The fluorescence excitation spectrum displays a peak at 290 nm, and its appearance at this position rather than at 280 nm, which is the absorption maximum of tryptophan, is believed to arise from inner filtering by the tyrosine residues in keratin.  相似文献   

16.
Residual structures in denatured proteins have acquired importance in recent years owing to their role as protein-folding initiation sites. Locating these structures in proteins has proved quite formidable, requiring techniques like NMR. Here in this report, we take advantage of the ubiquitous presence of tryptophan residues in residual structures to hunt for their presence using steady-state fluorescence spectroscopy. The surface accessibility and rotational dynamics of tryptophan in putative residual structures among ten different proteins, namely glucagon, melittin, subtilisin carlsberg, myelin basic protein, ribonuclease T1, human serum albumin, barstar mutant, bovine serum albumin, lysozyme and Trp-Met-Asp-Phe-NH2 peptide, was studied using steady state fluorescence quenching and anisotropy, respectively. Five proteins, namely ribonuclease T1, bovine serum albumin, melittin, barstar and hen egg white lysozyme appear likely to possess tryptophan(s) in hydrophobic clusters based on their reduced bimolecular quenching rates and higher steady-state anisotropy in proportion to their chain length. We also show that the fluorescence emission maximum of tryptophan is insensitive to the presence of residual structures.  相似文献   

17.
The time-resolved fluorescence properties of the bacteriophage T4 capsid protein gp23 are investigated. The structural characteristics of this protein are largely unknown and can be probed by recording time-resolved and decay-associated fluorescence spectra and intensity decay curves using a 200 ps-gated intensified CCD-camera. Spectral and decay data are recorded simultaneously, which makes data acquisition fast compared to time-correlated single-photon counting. A red-shift of the emission maximum within the first nanosecond of decay is observed, which can be explained by the different decay-associated spectra of fluorescence lifetimes of the protein in combination with dipolar relaxation. In addition, iodide quenching experiments are performed, to study the degree of exposure of the various tryptophan residues. A model for the origin of the observed lifetimes of 0.032 +/- 0.003, 0.39 +/- 0.06, 2.1 +/- 0.1 and 6.8 +/- 0.8 ns is presented: the 32 ps lifetime can be assigned to the emission of a buried tryptophan residue, the 0.4 and 2.1 ns lifetimes to two partly buried residues, and the 6.8 ns lifetime to a single tryptophan outside the bulk of the folded gp23.  相似文献   

18.
The bacteriophage T4 capsid protein gp23 was studied using time-resolved and steady-state fluorescence of the intrinsic protein fluorophore tryptophan. In-vitro gp23 consists mostly of monomers at low temperature but forms hexamers at room temperature. To extend our knowledge of the structure and hexamerization characteristics of gp23, the temperature-dependent fluorescence properties of a tryptophan mutant (W13V) were compared to those of wild-type gp23. The W13V mutation is located in the N-terminal part of the protein, which is cleaved off after prohead formation in the live bacteriophage. Results show that W13 plays a role in the hexamerization process but is not needed to stabilize the hexamer once it is formed. Furthermore, besides the monomer-to-hexamer temperature transition (15-23 degrees C and 12-43 degrees C for wild-type and W13V gp23, respectively), we were able to observe denaturation of the N-terminus in hexameric wild-type gp23 around 40 degrees C. In addition, with the aid of a recently published homology model of gp23, the lifetimes obtained from time-resolved fluorescence measurements could tentatively be assigned to specific tryptophan residues.  相似文献   

19.
Fluorescence quenching and time-resolved fluorescence studies have been carried out on the Trichosanthes dioica seed lectin (TDSL). The emission lambdamax of native TDSL, seen at 328nm, shifts to 343nm upon denaturation with 6M guanidinium chloride. Quenching titrations were performed with neutral (acrylamide and succinimide) and ionic (I(-) and Cs(+)) quenchers in order to probe the exposure and accessibility of tryptophan residues of the protein. Maximum quenching was observed with acrylamide, followed by succinimide, iodide and Cs(+). Dramatic increase in the extent of quenching and other quenching parameters by all the quenchers were observed upon denaturation of TDSL, suggesting that all the tryptophan residues in native TDSL are buried in the hydrophobic core of the protein. Increase in the extent of quenching upon denaturation of TDSL was maximum with I(-) and minimum with Cs(+), suggesting the presence of positively charged residue(s), near at least one tryptophan residue. Addition of saccharide ligands such as methyl-beta-d-galactopyranoside and lactose led to a small, but reproducible decrease in the fluorescence intensity of the lectin. The presence of lactose provided a partial protection against quenching by I(-), Cs(+) and succinimide, but not acrylamide. In time-resolved fluorescence measurements the fluorescence decay curves could be best fitted to biexponential patterns with lifetimes of 4.09 and 1.53ns for native lectin, 3.40 and 1.65ns for the lectin in presence of 0.1M lactose and 3.50 and 1.40ns for denatured lectin.  相似文献   

20.
We have analyzed the tryptophan (trp) fluorescence-decay kinetics of single trp mutants of the Tet repressor protein in the free, the tet operator and anhydrotetracycline (atc)-bound states. The position of the single trp varies between residues 164 and 171, in close proximity to one entrance of the tetracycline-binding pocket. A good fit of the trp fluorescence decay needed generally three exponentials. The decay times vary with detection wavelength, the extent of this variation being correlated to the variation of the emission maximum. Quenching experiments with neutral (acrylamide), cationic (N-methylpyridinium chloride) and anionic quencher (KI) support the interpretation of the three fluorescence components within a conformer model. Operator and atc binding change the ratio of the relative amplitudes of the medium- and long-lived component, thus pointing to structural changes as indicated also by the changes in decay time. Since the fluorescence decay is different between the free, atc- and operator-bound states we conclude that the protein structure is different in each of these three states. The fluorescence quenching constants reflect not only the variation in solvent exposure with position, but also the fact that the net surface charge in this region is negative, because the quenching constants by the cationic quencher are up to 10-fold higher. The atc fluorescence appears to decay monoexponentially with about the same decay time for all mutants, except W170, in which the trp residue sterically interferes with atc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号