首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The gas-dynamical structure of jets of a low-density diatomic gas beyond a sonic nozzle at large pressure drops under conditions of a transition from continuous medium processes to rarefied gas processes is examined on the basis of experimental data obtained in low-density gas-dynamical tubes using electron-beam diagnostics and the Pitot tube method. Isomorphism is shown in the density distribution and total pressure in all cross sections of the jet with respect to pressures at a constant value of the complex RL=R*/N1/2(R* is the Reynolds number in the critical cross section of the nozzle, and N is the ratio of the Pitot pressure and the pressure in the discharge chamber). It is shown on the basis of a comparison of local Reynolds numbers for all zones of the jet that this is an analog complex. The experimental data on the variation in the jet structure are presented as a function of the number RL in the range of 5–600. For RL> 100 the flow in the jet can be considered as continuous; for RL< 5–10 the flow corresponds to a scattering process; the range of 5–10< RL< 100 corresponds to a transitional state. Ranges of isomorphism of the jet with respect to R* and N are indicated. Based on the results of the measurements, it is shown that the flow behind a Mach disk for RL> 200 remains subsonic on the axis to a distance of several lengths of the primary cycle. A transition to supersonic velocity on the jet axis can occur with a decrease in the numbers RL owing to ejection acceleration by the supersonic ring-shaped compressed layer.This word is apparently interchangeable with self-similarity-Translator.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 64–73, March–April, 1973.  相似文献   

2.
Turbulent supersonic submerged air jets have been investigated on the Mach number interval Ma = 1.5–3.4 and on the interval of ratios of the total enthalpies in the external medium and the jet i0 = 0.01 – 1. Oxyhydrogen jets with oxidizer ratios = 0.3–5 flowing from a nozzle at Mach numbers Ma = 1 and 2.4 have also been investigated. When < 1 the excess hydrogen in the jet burns up on mixing with the air. Special attention has been paid to obtaining experimental data free of the influence on the level of turbulence in the jet of the initial turbulence in the nozzle forechamber, shock waves occurring in the nozzle or in the jet at the nozzle exit, and the external acoustic field. The jet can be divided into two parts: an initial part and a main part. The initial part extends from the nozzle exit from the section x, in which the dimensionless velocity on the jet axis um = ux/ud = 0.75. Here, ux is the velocity on the jet axis at distance x from the nozzle exit, and ua is the nozzle exit velocity. The main part of the jet extends downstream from the section x. For the dimensionless length of the initial part xm = x/da, where da is the diameter of the nozzle outlet section, empirical dependences on Ma and i0 are obtained. It is shown, that in the main part of the jet the parameters on the flow axis — the dimensionless velocity and temperature — vary in inverse proportion to the distance, measured in units of length x, and do not depend on the flow characteristics which determine the length of the initial part of the jet. The angles of expansion of the viscous turbulent mixing layer in the submerged heated or burning jet increase with decrease in i0 and Ma and are practically independent of the afterburning process.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza. No. 4, pp. 56–62, July–August, 1988.  相似文献   

3.
A new phenomenon is revealed — the rotation of an ejecting jet, discharging from a nozzle and adhering to the wall of the mixing chamber, in an axisymmetric gas ejector in modes with zero and negative ejection coefficients — and a possible mechanism for its origin is discussed. It is suggested that the rotation of an adhering jet, which induces axisymmetric vortex motion of the gas in the injector, is responsible for the inverse separation of the initially energetically homogeneous stream into heated and cooled sections.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 145–151, November–December, 1977.  相似文献   

4.
The interaction of the turbulent axisymmetric near wake behind the face of the central body of an annular nozzle with the supersonic annular jet discharging from this nozzle is analyzed. The flow in the monoparametric near wake is calculated by the integral method [1] while the flow in the nonviscous jet is calculated by the method of through calculation using a monotonic explicit difference system of the first order of accuracy [2]. The interaction between the nonviscous and turbulent streams is determined by the displacement thickness of the wake. The initial conditions of the wake are determined from the integral conditions of attachment with the mixing flow in the isobaric base region. The interaction flow is described by the particular solution of the equations which passes through the singular saddle point — the throat of the wake. The near wake and base pressure in different modes of discharge from an annular nozzle at the exit cross section of which the ratio of outer and inner radii is y2/y1 = 1.3 and the Mach number is M = 2.54 are calculated as an example. The region of hysteresis of the base pressure, connected with the ambiguity of the interaction flow owing to the formation of the throat of the wake within the first or second barrel of the jet, and the parameters of the low-frequency flow-rate oscillations of base pressure in this region are determined. The results of the calculations are in satisfactory agreement with experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 125–130, January–February, 1977.  相似文献   

5.
The article gives the results of an experimental investigation of the geometric structure of an opposing unexpanded jet. It discusses flow conditions with interaction between the jet and sub- and supersonic flows. It is shown that, with the outflow of an unexpanded jet counter to a supersonic flow, there are unstable flow conditions. For stable flow conditions with one roll, dependences are proposed determining the form of a jet in a supersonic opposing flow. A generalized dependence is obtained for the distribution of the pressure at the surface of a body with a jet, flowing out counter to a subsonic flow. The range of change in the determining parameters are the following: Mach numbers at outlet cross section of nozzle, M a = 1 and 3; Mach numbers of opposing flow, M = 0.6–0.9 and 2.9; degree of effectiveness of jet, n = p a /p = 0.5–800 (p a and p are the static pressures at the outlet cross section of the nozzle and in the opposing flow); the ratios of the specific heat capacities, a = = 1.4; the drag temperatures of the jet and the flow, To = Toa = 290°K.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 89–96, January–February, 1977.  相似文献   

6.
A study is made of flow in turbulent jets when there is condensation of the water vapor contained in them. A necessary condition for condensation in vapor-air jets is formulated. Relations are obtained for the regime of equilibrium condensation. An experimental investigation was made of the local characteristics of an isobaric turbulent vapor jet exhausting into air at rest when condensation develops in the jet and foreign condensation nuclei (smoke particles) and charged particles (ions produced in a corona discharge) are introduced into the flow. Measurements were made of the local characteristics of the condensed disperse phase — the Sauter diameter d32 of the drops and their volume concentration cs — using the optical method of an integrating diaphragm. It is shown that d32 and32 cs increase downstream in the main section of the jet. Specific features of temperature measurements using an end-type microthermocouple were established. Quantitative data were obtained about the influence on the condensation of the thermal conditions and the presence of the foreign particles. The conditions under which there is an intensification of the condensation in vapor-air jets in the presence of ions were determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 53–61, May–June, 1984.  相似文献   

7.
A study is made of the exhausting of a jet of viscous gas from a cylindrical channel into vacuum in the presence of a flat bounding surface outside the channel in the plane of its exit section. The problem is solved numerically using the complete system of Navier—Stokes equations. The developed flow model makes it possible to take into account the influence of an external medium into which the jet exhausts on the structure of the flow in the exit section of the channel, and also the influence of the subsonic part of the boundary layer in the channel on the flow field of the jet.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 122–128, January–February, 1981.  相似文献   

8.
Results are presented of an experimental investigation of the interaction of a subsonic axisymmetric jet, within the initial section, and a flat plate mounted parallel to the jet axis. Relations are obtained for the mean and fluctuating velocities in the wall boundary layer, and the friction stress on the plate is also given.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 77–82, November–December, 1972.  相似文献   

9.
Experimental results are presented for a teardrop-shaped wing section with tangential slit jet blowing in the forward part of the section. It is shown that such airfoils can provide a lift significantly greater than the lift which can be achieved by blowing a tangential slit jet from a wing of ordinary shape with a flap.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 182–186, July–August, 1996.  相似文献   

10.
The propagation of acoustic perturbations (specified in the outlet cross section of a particular channel) along a supersonic jet flowing out of the channel is considered; also considered is acoustic emission from the surface of the jet into the atmosphere. The solution of these problems is obtained by a numerical method on the linear approximation. The laws governing the propagation of the perturbations as a function of the perturbation frequency and other determining parameters are investigated; these parameters include the velocity and temperature of the jet, the velocity of the subsonic accompanying flow in the external medium, and the character of the perturbation in the initial cross section of the jet.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 92–99, March–April, 1977.  相似文献   

11.
The problem of the propagation of a laminar immersed fan jet with swirling was considered in [1–3]. In [1], the jet source scheme was used to find a self-similar solution for a weakly swirling jet. An attempt to solve by an integral method the analogous problem for a jet emanating from a slit of finite size was made in [2]. In [3], the equations of motion for a jet with arbitrary swirling were reduced under a number of assumptions to the equations that describe the flow of a flat immersed jet. This paper gives the numerical solution to the problem of the propagation of a radial jet emanating with arbitrary swirling from a slit of finite size and an analytic solution for the main section of the jet.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 49–54, March–April, 1991.  相似文献   

12.
The problem of plane steady ideal heavy fluid flow bounded by an impermeable polygonal section, a curvilinear arc section, and a finite section of free surface is investigated in an exact nonlinear formulation. Hydrodynamic singularities may exist in the stream. A large class of captation problems of jet theory reduces to studying this kind of flow. The unique solvability of the problem under investigation is proved for sufficiently large Froude numbers and small arc curvature. A method of solution is given and an example is computed. Such problems have been solved earlier by numerical methods [1–3]. Some problems about jet flows of a gravity fluid with polygonal solid boundaries have been investigated by an analogous method in [4, 5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 140–143, May–June, 1975.  相似文献   

13.
The problem of the interaction of a viscous supersonic stream in a flat nozzle with a transverse gas jet of the same composition blown through a slot in one wall of the nozzle is examined. The complete Navier-Stokes equations are used as the initial equations. The statement of the problem in the case of the absence of blowing coincides with [1]. The conditions at the blowing cut are obtained on the assumption that the flow of the blown jet up to the blowing cut is described by one-dimensional equations of ideal gasdynamics. The proposed model of the interaction is generalized to the case of flow of a multicomponent gas mixture in chemical equilibrium. The exact solutions found in [2] are used as the boundary conditions at the entrance to the section of the nozzle under consideration. The results of numerical calculations of the flows of a homogeneous nonreacting gas and of an equilibrium mixture of gases consisting of four components (H2, H2O, CO, CO2) are given for different values of the parameters of the main stream and of the blown jet. In the latter case it is assumed that the effect of thermo- and barodiffusion can be neglected.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 55–63, July–August, 1974.  相似文献   

14.
The results are given of an experimental investigation of the flow in the initial section of a turbulent underexpanded jet exhausting from a profiled nozzle with Mach number M a = 2.56 at the exit into a parallel stream with Mach number M = 3.1. Analysis of the results of measurement of the fields of the total head p0 and the stagnation temperature T0 in conjunction with results of calculation of a jet of an ideal gas make it possible to construct the velocity profile in the mixing layer of the underexpanded jet in the parallel supersonic flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 161–163, January–February, 1981.  相似文献   

15.
Experimental data are presented on the aerodynamics of a supersonic twisted jet with different values of the system parameters. Shadow photographs of the gasdynamic section and profiles of the average characteristics of the jet are obtained. The experimental data on the stagnation temperature and velocity components were analyzed in universal coordinates. The experimental results are compared with a calculation by the method of the equivalent problem of the theory of heat conduction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 184–186, January–February, 1977.  相似文献   

16.
The pressure distribution on a cone with a half-angle =75°, from which a single central underexpanded jet issues into a subsonic counterstream, has been experimentally investigated. The effect of the flow regime in the jet on the pressure distribution is demonstrated. Generalized relations for the pressure on the body are obtained for various jet-flow momentum ratios J and flow Mach numbers M = 0.35–0.9; the Mach number Ma at the exit of the conical nozzle with half-angle a=10° was equal to 2.9. The working medium of the jet and the flow was air with stagnation temperatures T0a = T0 260–265°K. The ratio of the nozzle outlet radius to the radius of the maximum cross section of the cone a/RM=0.1.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 182–185, January-February, 1988.  相似文献   

17.
A vapor-air axisymmetric submerged jet was calculated for various environmental conditions and a number of values of vapor concentration and temperature of the vapor-air mixture in the initial section of the jet. The process of condensation in a vapor-air jet was investigated experimentally with the use of the laser-optical method of measuring the degree of dispersion and concentration of condensate droplets.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 142–144, May–June, 1976.  相似文献   

18.
A. L. Yarin 《Fluid Dynamics》1983,18(1):134-136
Quasi-one-dimensional equations for the three-dimensional motion of thin liquid jets have been derived by Entov and the present author [1, 2] from the balance integral equations for the mass, momentum, and angular momentum written down for a jet section. Simplified equations of this kind make it possible, in particular, to investigate with comparative ease the motion of bending jets and also the loss of stability of jets moving in air associated with the development of kinks, etc. It is of interest to obtain quasi-one-dimensional equations of jet motion by direct integration over the section of a thin jet of the three-dimensional differential equations of hydrodynamics. In the present note, this approach is illustrated by the example of bending of a jet in a plane.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 161–163, January–February, 1983.  相似文献   

19.
The results of solving the problem of the initial section of isothermal coaxial jets with strong central blowing, when the transverse pressure gradient has only a slight effect and there is no circulation zone in the central jet are given. The problem is solved by the integral relation method with allowance for jet interference and the presence of a cocurrent flow. The results of an experimental investigation of these jets over a wide range of the geometric and regime parameters are also given. The results of the calculations made using the formulas obtained are compared with the experimental data.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 52–59, May–June, 1996.  相似文献   

20.
Results of an investigation into the diffusion processes in a jet of low density behind a strongly underexpanded sonic nozzle, in the zone of mixing with the surrounding gas, are presented. By means of electron-beam methods, the structure of the jet was studied in the case of expanding N2, into an atmosphere of CO2 + N2 in transient regimes of flow varying from solid to rarefied. The results of an analysis of the fields of concentration of the separate components are given in a generalized form.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 121–127, January–February, 1973.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号