首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) coupled with high performance liquid chromatography-diode array detection has been developed for the extraction and determination of six carbamate pesticides (metolcarb, carbofuran, carbaryl, pirimicarb, isoprocarb and diethofencarb) in water samples. In the UASEME technique, Tween 20 was used as emulsifier, and chlorobenzene and chloroform were used as dual extraction solvent without using any organic dispersive solvent that is normally required in the previously described common dispersive liquid–liquid microextraction method. Parameters that affect the extraction efficiency, such as the kind and volume of the extraction solvent, the type and concentration of the surfactant, ultrasound emulsification time and salt addition, were investigated and optimized for the method. Under the optimum conditions, the enrichment factors were in the range between 170 and 246. The limits of detection of the method were 0.1–0.3 ng mL−1 and the limits of quantification were between 0.3 and 0.9 ng mL−1, depending on the compounds. The linearity of the method was obtained in the range of 0.3–200 ng mL−1 for metolcarb, carbaryl, pirimicarb, and diethofencarb, 0.6–200 ng mL−1 for carbofuran, and 0.9–200 ng mL−1 for isoprocarb, with the correlation coefficients (r) ranging from 0.9982 to 0.9998. The relative standard deviations varied from 3.2 to 4.8% (n = 5). The recoveries of the method for the six carbamates from water samples at spiking levels of 1.0, 10.0, 50.0 and 100.0 ng mL−1 were ranged from 81.0 to 97.5%. The proposed UASEME technique has demonstrated to be simple, practical and environmentally friendly for the determination of carbamates residues in river, reservoir and well water samples.  相似文献   

2.
A simple and sensitive method was developed for the determination of three carbamate pesticides in water samples. It is based on temperature controlled ionic liquid dispersive liquid phase microextraction combined with high-performance liquid chromatography. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was used as the extractant, and the factors affecting the extraction were investigated in detail. The detection limits obtained for isoprocarb, diethofencarb and fenothiocarb are 0.91, 0.45, and 1.40 μgL-1, respectively, and the precisions are in the range between 1.0 and 1.8% (n?=?6). The method was validated with environmental water samples and the results indicate that it represents a viable alternative to existing methods.
Figure
Temperature controlled ionic liquid dispersive liquid phase microextraction was developed for the enriching three carbamate pesticides. 1-Hexyl-3-methylimidazolium hexafluorophosphate was used as the extractant. The detection limits for isoprocarb, diethofencarb, fenothiocarb are 0.91, 0.45, 1.40 μgL-1. Real-world environmental water samples analysis indicated that it was a viable alternative to existing methods.  相似文献   

3.
4.
Guo L  Lee HK 《Journal of chromatography. A》2011,1218(28):4299-4306
For the first time, an ionic liquid based three-phase liquid-liquid-liquid solvent bar microextraction (IL-LLL-SBME) was developed for the analysis of phenols in seawater samples. The ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]), was used as the intermediary solvent for LLL-SBME, enhancing the extraction efficiency for polar analytes. In the procedure, the analytes were extracted from the aqueous sample into the ionic liquid intermediary and finally, back-extracted into an aqueous acceptor solution in the lumen of the hollow fiber. The porous polypropylene membrane acted as a filter to prevent potential interfering materials from being extracted, and no additional cleanup was required. After extraction, the acceptor solution could be directly injected into a high-performance liquid chromatographic system for analysis. Six phenols, 2-nitrophenol, 4-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol were selected here as model compounds for developing and evaluating the method. The most influential extraction parameters were evaluated, including the ionic liquid, the composition of donor solution and acceptor solution, the extraction time and the extraction temperature, the effect of ionic strength, and the agitation speed. Under the most favorable extraction parameters, the method showed good linearity (from 0.05-50 to 0.5-50 μg/L, depending on the analytes) and repeatability of extractions (RSD below 8.3%, n=5). The proposed method was compared to conventional three-phase LLL-SBME and ionic liquid supported hollow fiber protected three-phase liquid-liquid-liquid microextraction, and showed higher extraction efficiency. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of phenols from environmental water samples.  相似文献   

5.
A novel method for the determination of five carbamate pesticides(metolcarb,carbofuran,carbaryl,isoprocard and diethofencard)in water samples was developed by dispersive liquid-liquid microextraction(DLLME)coupled with high performance liquid chromatography-diode array detector(HPLC-DAD).Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results.Under the optimum conditions for the method,the calibration curve was linear in the c...  相似文献   

6.
7.
In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L^-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.  相似文献   

8.
A new simple and rapid dispersive liquid–liquid microextraction has been applied to preconcentrate trace levels of cobalt as a prior step to its determination by spectrophotometric detection. In this method a small amount of chloroform as the extraction solvent was dissolved in pure ethanol as the disperser solvent, then the binary solution was rapidly injected by a syringe into the water sample containing cobalt ions complexed by 1-(2-pyridylazo)-2-naphthol (PAN). This forms a cloudy solution. The cloudy state was the result of chloroform fine droplets formation, which has been dispersed in bulk aqueous sample. Therefore, Co-PAN complex was extracted into the fine chloroform droplets. After centrifugation (2 min at 5000 rpm) these droplets were sedimented at the bottom of conical test tube (about 100 µL) and then the whole of complex enriched extracted phase was determined by a spectrophotometer at 577 nm. Complex formation and extraction are usually affected by some parameters, such as the types and volumes of extraction solvent and disperser solvent, salt effect, pH and the concentration of chelating agent, which have been optimised for the presented method. Under optimum conditions, the enhancement factor (as the ratio of slope of preconcentrated sample to that obtained without preconcentration) of 125 was obtained from 50 mL of water sample, and the limit of detection (LOD) of the method was 0.5 µg L?1and the relative standard deviation (RSD, n = 5) for 50 µg L?1 of cobalt was 2.5%. The method was applied to the determination of cobalt in tap and river water samples.  相似文献   

9.
10.
A new and simple method has been developed for the determination of a group of four benzimidazole pesticides (carbendazim/benomyl, thiabendazole, and fuberidazole), a carbamate (carbaryl), and an organophosphate (triazophos), together with two of their main metabolites (2-aminobenzimidazole, metabolite of carbendazim/benomyl, and 1-naphthol, metabolite of carbaryl) in soils. First, an ultrasound-assisted extraction (UAE) was performed, followed by evaporation and reconstitution in water. Then, extraction and preconcentration of the analytes was accomplished by two-phase hollow-fiber liquid-phase microextraction (HF-LPME) using 1-octanol as extraction solvent. Parameters that affect the extraction efficiency in HF-LPME technique (organic solvent, pH of the sample, extraction time, stirring speed, temperature, and ionic strength) were deeply investigated. Optimum HF-LPME conditions involved the use of a 2.0 cm polypropylene fiber filled with 1-octanol to extract 10 mL of an aqueous soil extract at pH 9.0 containing 20% (v/v) of NaCl for 30 min at 1440 rpm. Separation and quantification was achieved by HPLC with fluorescence detection (FD). The proposed optimum UAE-HF-LPME-HPLC-FD methodology provided good calibration, precision, and accuracy results for two soils of different physicochemical properties. LODs were in the range 0.001-6.94 ng/g (S/N = 3). With the aim of extending the validation, the HF-LPME method was also applied to different types of waters (Milli-Q, mineral and run-off), obtaining LODs in the range 0.0002-0.57 μg/L.  相似文献   

11.
Planar chromatography with diode array scanning (TLC-DAD) and high-performance chromatography with diode array detection (HPLC-DAD) were used to screen water samples for pesticides. Pesticides were enriched from lake water samples by SPE on C18/SDB-1, C18, C18 Polar Plus and cyanopropyl (CN) cartridges. The recovery rates were high for all extraction materials except for all pesticides on CN cartridges, for which the values were lower. SPE was used not only for preconcentration of analytes but also for their fractionation. The analytes were eluted first with methanol and then with dichloromethane. Methanol eluates were analysed by HPLC-DAD, the dichloromethane eluates with TLC-DAD. The method was validated for precision, repeatability and accuracy. The calibration plots were linear between 0.1 and 50.0 microg/mL for all pesticides, the correlation coefficients, r, were between 0.9992 and 1.000 as determined by HPLC-DAD. In the TLC experiments, the best fit for the calibration lines was found when the calibration data were analysed using a second-degree polynomial regression. Calibration plots lay between 0.1 and 17 microg/spot for all pesticides, the correlation coefficients, r, were between 0.9974 and 0.9997 determined by TLC-DAD. The LOD was between 0.04 and 0.65 microg/spot (TLC-DAD) and between 0.02 and 3.68 microg/mL (HPLC-DAD).  相似文献   

12.
This paper described a new approach for the determination of organophosphorus pesticides by temperature-controlled ionic liquid dispersive liquid-phase microextraction prior to high-performance liquid chromatography with ultraviolet detection. Methylparathion and phoxim, two of the typical organophosphorus pesticides, were used as the model analytes for the investigation of the development and application of the new microextraction method. 1-Hexyl-3-methylimidazolium hexafluorophosphate [C6MIM][PF6] was used as the extraction solvent and the factors affecting the extraction efficiency such as the volume of [C6MIM][PF6], pH of working solutions, extraction time, centrifuging time, dissoluble temperature and salt effect were optimized. Under the optimal extraction conditions, methylparathion and phoxim exhibited good linear relationship in the concentration range of 1-100 ng mL(-1). The detection limits were 0.17 ng mL(-1) and 0.29 ng mL(-1), respectively. Precisions of proposed method (RSDs, n=6) were 2.5% and 2.7%, respectively. This proposed method was successfully applied in the analysis of four real environmental water samples and good spiked recoveries over the range of 88.2-103.6% were obtained. These results indicated that temperature-controlled ionic liquid dispersive liquid-phase microextraction had excellent application prospect in environmental field.  相似文献   

13.
A new method, which involves dynamic liquid-phase microextraction followed by HPLC with variable wavelength detection, was developed to determine phoxim in water samples. Experimental parameters affecting the extraction efficiency, such as extraction solvent, solvent volume, sampling volume, dwell time, number of samplings, and salt concentration were investigated. Under the optimal extraction conditions, phoxim was found to yield a good linear calibration curve in the concentration range from 0.01 to 10 microg/mL. The LOD is 2 ng/mL, and RSD at the 100 ng/mL levels is 8.9%. Lake water and tap water samples were successfully analyzed using the proposed method.  相似文献   

14.
This paper describes a new method for rapid and sensitive determination of diflubenzuron, flufenoxuron, triflumuron and chlorfluazuron in water samples by ultrasound-assisted ionic liquid dispersive liquid-phase microextraction in combination with HPLC. Ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) was used as the extraction solvent for the enrichment of four benzoylurea (BU) pesticides. Factors such as volume of [C(6)MIM][PF(6)], sonication time, sample pH, extraction time, centrifuging time and salting-out effect were systematically investigated. Under the optimum conditions, an excellent linear relationship was achieved in the range of 1.0-100?μg/L. The detection limits varied from 0.21 to 0.45?μg/L and the precision of the method was below 6.9% (RSD, n=6). The proposed method was successfully applied for the determination of these BU pesticides in water samples and excellent spiked recoveries were achieved. All these results demonstrated that this procedure provided a new simple, rapid, easy to operate, efficient and sensitive method for the analysis of BU pesticides in aqueous samples.  相似文献   

15.
Based on the non-volatility of room temperature ionic liquids (IL), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) IL was employed as an advantageous extraction solvent for high temperature headspace liquid-phase microextraction (LPME) of chloroanilines in environmental water samples. At high temperature of 90 degrees C, 4-chloroaniline, 2-chloroaniline, 3,4-dichloroaniline, and 2,4-dichloroaniline were extracted into a 10 microl drop of [C4MIM][PF6] suspended on the needle of a high-performance liquid chromatography (HPLC) microsyringe held at the headspace of the samples. Then, the IL was injected directly into the HPLC system for determination. Parameters related to LPME were optimized, and high selectivity and low detection limits of the four chlorinated anilines were obtained because the extraction was performed at high temperature in headspace mode and the very high affinity between IL and chlorinated anilines. The proposed procedure was applied for the analysis of the real samples including tap water, river water and wastewater samples from a petrochemical plant and a printworks, and only 3,4-dichloroaniline was detected in the printworks wastewater at 88.2 microg l(-1) level. The recoveries for the four chlorinated anilines in the four samples were all in the range of 81.9-99.6% at 25 microg l(-1) spiked level.  相似文献   

16.
In this work, room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim]PF6) was used as extractant in single drop microextraction (SDME). The traditionally volatile organic extractants were substituted by this green reagent, which changed SDME preconcentration into environmentally friendly method, relatively. After this pretreatment, ultra-trace copper in water and food samples could be accurately detected by spectrophotometer. This study was focused on the improvement of the analytical performance of spectrophotometric determination, expanding its applications. The influence factors relevant to IL-SDME, such as absorption spectra of complex, drop volume of RTIL, stirring rate and time, concentration of chelating agent, pH, and salt effect were studied systematically. Under the optimal conditions, the limit of detection (LOD) was 0.15 μg L(-1) with an enhancement factor (EF) of 33. The proposed method was green, simple, rapid, sensitive, and cost-efficient.  相似文献   

17.
In this paper, a magnetic bar microextraction was developed to extract schisandrin A, schisantherin A, and deoxyschizandrin from Wuweizi. The analytes were determined by HPLC. A stainless‐steel wire was inserted into the hollow of the hollow fiber to make the magnetic bar. The bar can be used to stir the extraction system and extract the analytes, and was isolated from the extract system by magnetic force. Several experimental parameters, including type and volume of extraction solvent, the number of magnetic bars, extraction temperature and time, stirring speed and NaCl concentration were investigated and optimized. The LODs for schisandrin A, schisantherin A, and deoxyschizandrin were 0.14, 0.06, and 0.10 μg/mL, respectively. The recoveries were in the range of 70.90–106.67% and the RSDs were < 8.84%. Compared with ultrasound‐assisted and Soxhlet extraction, when the present method was applied, the extraction time was shorter, the sample amount was smaller, and the consumption of organic solvent was lower.  相似文献   

18.
Benzoylurea (BU) insecticides have contributed greatly to the output of crops. Their residue in the environment put serious threats on human health and environmental safety. In this study, we have established a new, rapid, and reliable method for the monitoring of typical BU insecticides such as diflubenzuron, flufenoxuron, triflumuron, and chlorfluazuron with dispersive liquid–liquid microextraction prior to HPLC. Chlorobenzene and ethanol were employed as the extraction solvent and disperser solvent, respectively. The possible parameters which would influence the extraction efficiency such as the kinds and volumes of extraction and disperser solvents, extraction time, sample pH, centrifuging time, and salting‐out effect were optimized in detail. Under the optimal conditions, the linear range of proposed method was in the range of 1.0–70 μg/L. The detection limits varied from 0.24 to 0.82 μg/L and the precision of the method was <6.5% (RSD, n = 6). The proposed method was validated with real water samples and satisfactory spiked recoveries were achieved. All these results indicate that the proposed method is a low cost, easy to operate, efficient, and sensitive method for the analysis of BU insecticides in water samples.  相似文献   

19.
This paper described a simple, rapid and efficient method for the determination of N-methyl carbamate pesticides in tomato, cucumber, carrot and lettuce samples by dispersive liquid-liquid microextraction coupled with HPLC-diode array detection. Some experimental parameters that influenced the extraction efficiency, such as types and volumes of extraction and disperser solvents, extraction time and salt effect were examined and optimized. Under optimum conditions, the LOD of the method were 0.5-3.0 μg/kg depending on the compounds and the kind of vegetables. The linearities of the method were obtained in the range of 10.0-300 μg/kg for aldicarb, MTMC, carbofuran and carbaryl, and 20.0-600 μg/kg for isoprocarb, with the correlation coefficients ranging from 0.9921 to 0.9993. The RSD varied from 2.9 to 7.5% (n=5). The recoveries of the method for the five carbamates from vegetable samples at two different spiking levels were ranged from 77.8 to 98.2%. Results showed that the method we proposed can meet the requirements for the determination of N-methyl carbamate in vegetable samples and was finally applied to the analysis of target pesticides in vegetable samples taken from local markets.  相似文献   

20.
Wu Q  Zhao G  Feng C  Wang C  Wang Z 《Journal of chromatography. A》2011,1218(44):7936-7942
A graphene-based magnetic nanocomposite was synthesized and used for the first time as an effective adsorbent for the preconcentration of the five carbamate pesticides (metolcarb, carbofuran, pirimicarb, isoprocarb and diethofencarb) in environmental water samples prior to high performance liquid chromatography-diode array detection. The properties of the magnetic nanocomposite were characterized by scanning electron microscopy and X-ray diffraction. This novel graphene-based magnetic nanocomposite showed great adsorptive ability towards the analytes. The method, which takes the advantages of both nanoparticle adsorption and magnetic phase separation from the sample solution, could avoid some of the time-consuming experimental procedures related to the traditional solid phase extraction. Various experimental parameters that could affect the extraction efficiencies have been investigated. Under the optimum conditions, the enrichment factors of the method for the analytes were in the range from 474 to 868. A linear response was achieved in the concentration range of 0.1-50 ng mL(-1). The limits of detection of the method at a signal to noise ratio of 3 for the pesticides were 0.02-0.04 ng mL(-1). Compared with the dispersive liquid-liquid microextraction and the ultrasound-assisted surfactant-enhanced emulsification microextraction, much higher enrichment factors and sensitivities were achieved with the developed method. The method has been successfully applied for the determination of the carbamate pesticides in environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号