首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一锅法合成甲基丙烯酰基封端的PLA-PEG-PLA大分子单体   总被引:2,自引:0,他引:2  
以辛酸亚锡[Sn(Oct)2]为催化剂、聚乙二醇为引发剂引发丙交酯开环聚合,用水终止反应后再加入甲基丙烯酸酐反应即可得到甲基丙烯酰基封端的PLA-PEG-PLA大分子单体。上述两步反应可一锅进行,操作简便、收率高。采用GPC、FTIR、^1H-NMR、TG、XRD等分析手段表征了大分子单体的结构和性质。所得大分子单体的水溶液在光引发剂存在下,能被UV引发光聚合形成水凝胶。该水凝胶作为可降解生物材料可用于药物控释栽体和组织工程支架。  相似文献   

2.
以辛酸亚锡为催化剂 ,通过星型聚乙二醇 (PEG)引发ε 己内酯 (CL)开环聚合 ,制备了PEG b PCL嵌段共聚物 ,进一步以丙烯酸酯封端 ,合成了 3种水溶性大分子单体 .以 2 ,2 二甲氧基 2 苯基苯乙酮为引发剂 ,在紫外光作用下 ,大分子单体在水中由于胶束的形成能够迅速聚合形成水凝胶 .利用1 H NMR、FTIR、DSC、TGA、ESEM、凝胶含量、溶胀比等分析测试手段对大分子单体及其形成的水凝胶进行了表征 .结果表明 ,干胶迅速吸水而达到溶胀平衡 ,水凝胶具有较大的溶胀比和高的水含量 ;随着PEG臂数的增加 ,干胶的熔融峰顶温度下降 ,凝胶的溶胀比减小 ;ESEM图片上清晰地表明水凝胶的网络结构  相似文献   

3.
Methyl methacrylate macromers were synthesized by a catalytic chain‐transfer polymerization, with number‐average molecular weight values ranging from 600 to 26,000. These macromers subsequently were copolymerized with dimethyl acrylamide in bulk by γ radiation to yield transparent xerogel materials. The copolymerization was confirmed by NMR analyses and by subsequent aqueous extractions of the resultant copolymers. On swelling in deionized water, hydrogels were formed that had significantly higher Young's moduli than hydrogels based on statistical methyl methacrylate/dimethyl acrylamide copolymers of equivalent composition. If macromers of high molecular weight were used, phase separation occurred, resulting in opaque hydrogel compositions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 810–817, 2000  相似文献   

4.
Although photopolymerization reactions are commonly used to form hydrogels, these strategies rely on light and may not be suitable for delivering therapeutics in a minimally invasive manner. Here, hyaluronic acid (HA) macromers are modified with norbornene (Nor) or tetrazine (Tet) and upon mixing click into covalently crosslinked Nor-Tet hydrogels via a Diels–Alder reaction. By incorporating a high degree of Nor and Tet substitution, Nor-Tet hydrogels with a broad range in elastic moduli (5 to 30 kPa) and fast gelation times (1 to 5 min) are achieved. By pre-coupling methacrylated HANor macromers with thiolated peptides via a Michael addition reaction, Nor-Tet hydrogels are peptide-functionalized without affecting their physical properties. Mesenchymal stem cells (MSCs) on RGD-functionalized Nor-Tet hydrogels adhere and exhibit stiffness-dependent differences in matrix mechanosensing. Fluid properties of Nor-Tet hydrogel solutions allow for injections through narrow syringe needles and can locally deliver viable cells and peptides. Substituting HA with enzymatically degradable gelatin also results in cell-responsive Nor-Tet hydrogels, and MSCs encapsulated in Nor-Tet hydrogels preferentially differentiate into adipocytes or osteoblasts, based on 3D cellular spreading regulated by stable (HA) and degradable (gelatin) macromers.  相似文献   

5.
光聚合α-CD组装超分子结构水凝胶的合成与表征   总被引:4,自引:0,他引:4  
1990年, Harada等[1,2]首先观察到α-环糊精(α-CD)与PEG形成的结晶包结物(ICs). 进一步的研究发现, n=400~10 000的PEG均能与α-CD形成结晶ICs, 其形成速率与n有关, n=1 000的PEG形成ICs的速率最快. 由于α-CD是通过与相邻α-CD的氢键作用、空间立体配位及其疏水空腔与聚合物链形成包结物, 这种包结物也称为多聚准轮烷.  相似文献   

6.
Bioabsorbable hydrogels are useful in a variety of medical applications. Water soluble macromers composed of polyethylene glycol (PEG)-oligo(d,l-lactide) ABA block copolymers end-capped with acrylate groups can be photopolymerized on tissue to provide hydrogels. The synthesis, characterization and photopolymerization of these monomers using either ultra-violet or visible light have been reported previously. The size and number of micelles in solution are elements in the optimization of both the extent and rate of polymerization. In the present study, gel modulus and end group analysis methods were used to characterize the degree of conversion of gel formed from macromers having various oligo(d,l-lactide) (A) block lengths. The formation of micelles was studied using dye solubilization and surface tension measurements. The kinetics of gelation of these macromers showed correlation of polymerization rate with the length of the hydrophobic A block length. The increase in hydrophobic components may cause an increase in the micelle number concentration per unit volume, which is known to directly affect the rate of emulsion polymerization. The hydrophobic segment length is therefore a useful tool for controlling the gel formation on tissue.  相似文献   

7.
Both octaglycidyletherpropyl polyhedral oligomeric silsesquioxane and hepta(3,3,3-trifluoropropyl)glycidyletherpropyl polyhedral oligomeric silsesquioxane were synthesized via the hydrosilylation reactions between octahydrosilsesquioxane [and/or hepta(3,3,3-trifluoropropyl)hydrosilsesquioxane] and allyl glycidyl ether. The polyhedral oligomeric silsesquioxane (POSS) macromers were characterized by means of Fourier transform infrared and nuclear magnetic resonance spectroscopy. The inter-component macromolecular reactions between the POSS macromers and poly(ethylene imine) (PEI) were employed to prepare the POSS-containing organic-inorganic PEI hybrids. The inclusion of octaglycidyletherpropyl POSS into PEI results in the formation of the organic-inorganic hybrid networks whereas the introducing hepta(3,3,3-trifluoropropyl)glycidyletherpropyl POSS to PEI affords the linear POSS-grafted PEI copolymers. Differential scanning calorimetry and thermogravimetric analysis show that the POSS-containing PEI hybrids displayed increased glass transition temperatures (Tg’s) and enhanced thermal stability compared to the plain PEI. These PEI hybrid composites can be significantly swollen with water without dissolving, suggesting the formation of hydrogels. The PEI hydrogels containing octaglycidyletherpropyl POSS is in reality the chemically-crosslinked hydrogels whereas the those containing hepta(3,3,3-trifluoropropyl)glycidyletherpropyl POSS displayed the behavior of physical hydrogels. The formation of physical hydrogels is ascribed to the microphase-separated morphology in the hybrids. In addition, the hybrids containing hepta(3,3,3-trifluoropropyl)glycidyletherpropyl POSS exhibited the typical amphiphilicity as evidenced by the increase in surface hydrophobilicity.  相似文献   

8.
In situ forming physical hydrogels are formed through a biologically benign reaction between two multi-arm macromers, one containing terminal thiol and the other containing terminal vinyl sulfone groups. One macromer is self-assembled through a coiled-coil domain; and the physical junction of this macromer confers the physical nature to the whole network. Unlike covalently cross-linked hydrogels in which material degradation is a prerequisite for three-dimensional cell movement, these physical hydrogels have junctions that undergo reversible dissociation and re-association, constitutively opening paths for cell movement. Epithelial cells encapsulated in these hydrogels can form hollow spherical cysts without the need for material degradation.  相似文献   

9.
Novel modifications of the synthetic polymer poly(vinyl alcohol) (PVA) were developed for application in the field of biomedical engineering. PVA was modified with allyl succinic anhydride, norbornene anhydride as well as with γ‐thiobutyrolactone to produce macromers with reactive ene and thiol groups, respectively. Cytotoxicity studies have shown that the material exhibits almost no cell‐toxicity, when used in concentrations of 1 and 0.1 wt % for 24 h. The obtained macromers were photocrosslinked via thiol–ene chemistry. Storage stability of the macromer mixtures with different concentrations of pyrogallol as stabilizer were investigated. Photorheometry was employed to optimize mixtures concerning reactivity based on their thiol‐to‐ene ratio, photoinitiator concentration, and macromer content. The crosslinked hydrogels were studied concerning their swellability. To form hydrogels with cellular structure two‐photon‐polymerization (2PP) was employed. Processing windows for 2PP of selected mixtures were determined. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2060–2070  相似文献   

10.
Poly(epsilon-caprolactone) (PCL) macromers (M(n) = 1.7-3.8 kDa) which contain one Z-protected -NH2 group per chain were synthesized by ring-opening polymerization of epsilon-caprolactone in the presence of Sn(oct)2 using as initiator a diamine prepared by condensation of N-Boc-1,6-hexanediamine and N(alpha)-Boc-N(epsilon)-Z-L-Lysine. The coupling of these macromers with -COCl end-capped poly(oxyethylene) (PEO), M(n) = 1.0 kDa, afforded amphiphilic multiblock poly(ether ester)s (PEEs) which have, along the chain, regularly spaced pendant protected amino groups. Deprotection, accomplished without chain degradation, yielded -NH2 groups available for further reactions. The molecular structure of macromers and PEEs was investigated by 1H NMR and SEC. DSC and WAXS analyses showed that macromers and copolymers were semicrystalline and their T(m) increased with increase in the molecular weight of PCL segments. The inherent viscosity values (0.25-0.30 dL x g(-1)), together with SEC analysis results, indicated moderate polymerization degrees.  相似文献   

11.
Four sets comprising a total of 16 sequential interpenetrating network (SeqIPN) hydrogels were efficiently fabricated via UV initiated thiol‐ene coupling chemistry and from 2 kDa or 8 kDa primary poly(ethylene glycol) (PEG) networks (S2 and S8). Each primary system delivered four different SeqIPNs constructed after 2, 4, 20, and 44 h diffusion of secondary network PEG precursors, 2 kDa and 8 kDa. This allowed the assessment of both mechanical and swelling properties for a wide range of novel hydrogels ranging from loosely crosslinked SeqIPN 8‐8 to densely crosslinked SeqIPN 2‐2 systems. All gel fractions of secondary networks were above 83% and 44 h of diffusion was found sufficient to fully saturate the primary networks. Disperse red functionalized PEGs (2 kDa and 8 kDa) were further used as probes to investigate the diffusion mechanisms. The impact of diffusion time on loosely crosslinked S8 network with a swelling degree of 970% and tensile modulus of 175 kPa displayed a significant change in the final properties. For instance, a 2 h diffusion of 2 kDa PEG precursors generated a SeqIPN 8‐2:2 comprising a secondary network solid content of 34% with a water swelling degree 580% and a tensile modulus of 365 kPa. On saturation, that is, 44 h of diffusion, SeqIPN 2‐8:44 exhibited 64% of secondary network solid content, a swelling capacity of 380% and over fourfold of tensile modulus (758 kPa) when compared with the primary network S8. SeqIPN hydrogel with the highest tensile modulus and lowest degree of water swelling was obtained after 44 h diffusion of 2 kDa PEG precursors within the densely crosslinked S2 primary network. In this case, SeqIPN 2‐2:44 noted a water swelling capability of 280% and a tensile modulus over 1 MPa. The latter was twofold when compared with S2 with a tensile modulus of 555 kPa. Consequently, the diffusion time of secondary network is a promising parameter to control and that enables the fabrication of PEG hydrogels with a wider window of mechanical and swelling properties. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
Hydrogels are attractive materials for generating 4D shapes due to their ability to undergo pronounced volume changes in response to several stimuli, including light. We previously reported shape-changing hydrogels actuated by long-wave UV and visible light in the presence of live cells using poly(ethylene glycol) macromers incorporating different photodegradable ortho-nitrobenzyl (o-NB) groups. In this comprehensive study, we determine the effect of chemical structure of different o-NB macromers (which influences molar absorptivity and rate constant of degradation), composition (macromer weight percent), fabrication design (initial gel thickness) and environment (ionic strength of solution) on light-induced hydrogel folding. We demonstrate successful photopolymerization and subsequent photodegradation of hydrogels, multistep folding, and live-cell encapsulation. This hydrogel system may be useful as new tool in stem cell differentiation and developmental biology research, facilitating the in vitro investigation of processes that are sensitive to both physical and temporal stimuli.  相似文献   

13.
Dendritic macromers are attractive macromolecules for hydrogel formation since high cross-linking densities at low polymer concentration can be obtained, varied physical properties can be observed based on the macromer structure, and low viscous aqueous solutions can be injected in an in vivo site of irregular shaped to form a well-integrated polymer network. A peptide dendron possessing terminal cysteine residues was synthesized and characterized. When this peptide dendron was mixed with poly(ethylene glycol dialdehyde) in aqueous solution at pH = 7.4, a hydrogel spontaneously formed as a consequence of thiazolidine linkages between the macromers. Such in situ polymerized hydrogels are of interest for tissue engineering and wound-repair applications. To evaluate the potential use of this hydrogel sealant in ophthalmic surgeries, a 3-mm clear corneal incision (i.e., the wounds created during a typical cataract surgery) was successfully sealed.  相似文献   

14.
A novel series of temperature‐ and pH‐sensitive hydrogels based on poly(2‐ethyl‐2‐oxazoline) and three‐arm poly(D,L ‐lactide) were synthesized via photocopolymerization. For the creation of polymeric networks, two types of macromers terminated with methacrylate groups were prepared: poly(2‐ethyl‐2‐oxazoline) dimethacrylate and three‐arm poly(D,L ‐lactide) trimethacrylate. The chemical structures were analyzed with 1H NMR and Fourier transform infrared techniques. The thermal behaviors, morphologies, and swelling properties were measured for the characterization of the polymeric networks. All the poly(2‐ethyl‐2‐oxazoline)/three‐arm poly(D,L ‐lactide)hydrogels provided high water retention capacity and exhibited reversible swelling–shrinking behavior in response to temperature and pH variations. The hydrogels with higher poly(2‐ethyl‐2‐oxazoline) dimethacrylate contents were more effective in raising the swelling ratio and temperature and pH sensitivity. However, higher contents of three‐arm poly(D,L ‐lactide) trimethacrylate produced larger particles and pore sizes in the hydrogels. This study effectively proves that this unique combination of water swellability and biodegradability provides hydrogels with a much wider range of applications in biomedical fields. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1112–1121, 2002  相似文献   

15.
We used atomistic molecular dynamics (MD) simulations to investigate the mechanical and transport properties of the PEO-PAA double network (DN) hydrogel with 76 wt % water content. By analyzing the pair correlation functions for polymer-water pairs and for ion-water pairs and the solvent accessible surface area, we found that the solvation of polymer and ion in the DN hydrogel is enhanced in comparison with both PEO and PAA single network (SN) hydrogels. The effective mesh size of this DN hydrogel is smaller than that of the SN hydrogels with the same water content and the same molecular weight between the cross-linking points (Mc). Applying uniaxial extensions, we obtained the stress-strain curves for the hydrogels. This shows that the DN hydrogel has a sudden increase of stress above approximately 100% strain, much higher than the sum of the stresses of the two SN hydrogels at the same strain. This arises because PEO has a smaller Mc value than PAA, so that the PEO in the DN reaches fully stretched out at 100% strain that corresponds to 260% strain in the PEO SN (beyond this point, the bond stretching and the angle bending increase dramatically). We also calculated the diffusion coefficients of solutes such as D-glucose and ascorbic acid in the hydrogels, where we find that the diffusion coefficients of those solutes in the DN hydrogel are 60% of that in the PEO SN and 40% of that in the PAA SN due to its smaller effective mesh size.  相似文献   

16.
In this study, a thorough exploration of constitutional parameters of thiol-ene photocrosslinkable hydrogels based on hyaluronic acid vinyl ester was conducted in order to decipher their impact on material properties. These constitutional parameters originated from the process of synthesis (macromer size and degree of substitution) and from the process of formulation (photoinitiator concentration, macromer content, and thiol-to-ene ratio). Various macromers were obtained with a broad variety of degrees of substitution. Photorheology measurements were performed in order to determine the influence of the structure parameters on photoreactivity and the physical properties of hydrogels. Final crosslink densities and photoreactivities dramatically increase with increasing number of functional groups, macromer concentrations as well as with photoinitiator concentration. Swellabilities of the hydrogels were determined as complementary reference values. Mass swelling ratios as well as mass loss increased with decreasing degree of substitution as a result of increased mesh size and hydrophilicity. Finally, hyaluronic acid vinyl ester formulations were used to encapsulate fluorescent-labeled immortalized human adipose-derived mesenchymal stem cells in 3D via UV and by high-resolution two-photon polymerization. Cell-survival was successfully studied via confocal laser scanning microscopy during the course of 2 weeks.  相似文献   

17.
The crystallinity, morphology and water swelling of a series of hydrogels based on poly(ethylene glycol)s (PEG), ¯n = 1610–8490 crosslinked by 1,2,6-hexanetriol and the stoichiometric equivalence of dicyclohexylmethane-4,4′-diisocyanate as coreactant to form an infinite urethane-linked network are examined. The equilibrium water uptake was found to be directly related to the ethylene oxide content irrespective of either ¯n(PEG) or the degree of crosslinking. Crystallinity affects the rate of swelling in water. Caffeine was incorporated into slices of hydrogels over a wide range of compositions and water contents by swelling with a solution of the drug. After drying then reswelling to desorb the caffeine the release profiles were drawn, and morphological factors contributing to the bolus and period of zero - order release are propounded.  相似文献   

18.
Zwitterionic hydrogels are very promising for biomedical applications. They are usually copolymerized with other polymers to improve their mechanical properties often at the expense of their biological properties. In this study, physically cross-linked poly(sulfobetaine methacrylate) (polySBMA) hydrogels were prepared, and their physical properties including phase behavior were investigated. Linear polySBMAs, with an average molecular weight ranging from 20.9 kDa to 316 kDa, were prepared via free radical polymerization at different KCl concentrations. The opaque-transparent phase transition of polySBMA-water mixtures were measured using a UV-vis spectrometer. Analysis from dynamic rheometry showed the formation of physically cross-linked hydrogels with mechanical ductility due to reversible charge interactions. Chemically cross-linked hydrogels were also prepared, and their swelling and mechanical properties were evaluated. It was found that the introduction of cross-linkers could lead to a decrease in the amount of physical cross-links in chemical hydrogels. In order to improve the mechanical properties of SBMA hydrogels, linear polySBMA was introduced to the network of chemically cross-linked polySBMA gels, creating a chemical-physical double network (DN) with both chemical and physical cross-links. The chemical-physical DN provides a desirable method to improve the mechanical properties of zwitterionic hydrogels without introducing other hydrophobic moieties.  相似文献   

19.
Novel cellulose hydrogels were synthesized through a "one-step" method from cellulose, which was dissolved directly in NaOH/urea aqueous solution, by using epichlorohydrin as crosslinker. Structure and properties of the hydrogels were characterized by using SEM, NMR, and water absorption testing. The hydrogels are fully transparent and display macroporous inner structure. The equilibrium swelling ratios of the hydrogels in distilled water at 25 degrees C are in the range from 30 to 60 g H(2)O/g dry hydrogel. Moreover, the reswelling water uptake of the hydrogels could be achieved to more than 70% compared with their initial swelling states. This work provided a simple and fast method for preparing eco-friendly hydrogels from unsubstituted cellulose.  相似文献   

20.
Digital light processing (DLP) bioprinting can be used to fabricate volumetric scaffolds with intricate internal structures, such as perfusable vascular channels. The successful implementation of DLP bioprinting in tissue fabrication requires using suitable photo-reactive bioinks. Norbornene-based bioinks have emerged as an attractive alternative to (meth)acrylated macromers in 3D bioprinting owing to their mild and rapid reaction kinetics, high cytocompatibility for in situ cell encapsulation, and adaptability for post-printing modification or conjugation of bioactive motifs. In this contribution, the development of gelatin-norbornene (GelNB) is reported as a photo-cross-linkable bioink for DLP 3D bioprinting. Low concentrations of GelNB (2–5 wt.%) and poly(ethylene glycol)-tetra-thiol (PEG4SH) are DLP-printed with a wide range of stiffness (G' ≈120 to 4000 Pa) and with perfusable channels. DLP-printed GelNB hydrogels are highly cytocompatible, as demonstrated by the high viability of the encapsulated human umbilical vein endothelial cells (HUVECs). The encapsulated HUVECs formed an interconnected microvascular network with lumen structures. Notably, the GelNB bioink permitted both in situ tethering and secondary conjugation of QK peptide, a vascular endothelial growth factor (VEGF)-mimetic peptide. Incorporation of QK peptide significantly improved endothelialization and vasculogenesis of the DLP-printed GelNB hydrogels, reinforcing the applicability of this bioink system in diverse biofabrication applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号