首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A finite difference method is developed to study, on a two-dimensional model, the acoustic pressure radiated when a thin elastic plate, clamped at its boundaries, is excited by a turbulent boundary layer. Consider a homogeneous thin elastic plate clamped at its boundaries and extended to infinity by a plane, perfectly rigid, baffle. This plate closes a rectangular cavity. Both the cavity and the outside domain contain a perfect fluid. The fluid in the cavity is at rest. The fluid in the outside domain moves in the direction parallel to the system plate/baffle with a constant speed. A turbulent boundary layer develops at the interface baffle/plate. The wall pressure fluctuations in this boundary layer generates a vibration of the plate and an acoustic radiation in the two fluid domains. Modeling the wall pressure fluctuations spectrum in a turbulent boundary layer developed over a vibrating surface is a very complex and unresolved task. Ducan and Sirkis [1] proposed a model for the two-way interactions between a membrane and a turbulent flow of fluid. The excitation of the membrane is modeled by a potential flow randomly perturbed. This potential flow is modified by the displacement of the membrane. Howe [2] proposed a model for the turbulent wall pressure fluctuations power spectrum over an elastomeric material. The model presented in this article is based on a hypothesis of one-way interaction between the flow and the structure: the flow generates wall pressure fluctuations which are at the origin of the vibration of the plate, but the vibration of the plate does not modify the characteristics of the flow. A finite difference scheme that incorporates the vibration of the plate and the acoustic pressure inside the fluid cavity has been developed and coupled with a boundary element method that ensures the outside domain coupling. In this paper, we focus on the resolution of the coupled vibration/interior acoustic problem. We compare the results obtained with three numerical methods: (a) a finite difference representation for both the plate displacement and the acoustic pressure inside the cavity; (b) a coupled method involving a finite difference representation for the displacement of the plate and a boundary element method for the interior acoustic pressure; (c) a boundary element method for both the vibration of the plate and the interior acoustic pressure. A comparison of the numerical results obtained with two models of turbulent wall pressure fluctuations spectrums - the Corcos model [3] and the Chase model [4] - is proposed. A difference of 20 dB is found in the vibro-acoustic response of the structure. In [3], this difference is explained by calculating a wavenumber transfer function of the plate. In [6], coupled beam-cavity modes for similar geometry are calculated by the finite difference method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The results of direct numerical simulation of turbulent flows of non-Newtonian pseudoplastic fluids in a straight pipe are presented. The data on the distributions of the turbulent stress tensor components and the shear stress and turbulent kinetic energy balances are obtained for steady turbulent flows at the Reynolds numbers of 104 and 2×104. As distinct from Newtonian fluid flows, the viscous shear stresses turn out to be significant even far from the wall. In power-law fluid flows the mechanism of the energy transport from axial to transverse component fluctuations is suppressed. It is shown that with decrease in the fluid index the turbulent transfer of the momentum and the velocity fluctuations between the wall layer and the flow core reduces, while the turbulent energy flux toward the wall increases. The earlier-proposed models for the average viscosity and the non-Newtonian one-point correlations are in good agreement with the data of direct numerical simulation.  相似文献   

3.
4.
Small and sensitive silicon sensors for turbulent wall-pressure fluctuation measurements have been designed and fabricated using microelectronic technology. For the detection of the pressure fluctuations piezoresistive gauges are placed on a diaphragm and the resistance of these gauges depends on the stresses in the diaphragm. For the determination of the performance of these pressure transducers comparisons with conventional microphones were carried out in a well-defined two-dimensional boundary layer. Power spectra from the silicon pressure transducer revealed a slope in the inertial sublayer corresponding approximately to the 5/3-law of Kolmogorov, and the normalized wall pressure fluctuations agreed well with other direct measurements.  相似文献   

5.
A novel eddy viscosity model for predicting friction drag reduction induced by polymers in turbulent wall-bounded flows is presented. The approach is based on the elliptic relaxation model modified to account for the modified Reynolds-stress equilibrium established by the presence of elastic polymer chains in the fluid. The increased wall damping of the turbulent fluctuations is obtained by modifying the pressure–strain redistribution term. Polymer solutions are represented using the Finite Extensibility Non-linear elastic FENE-P dumbbell model; only one transport equation for the elongation of the polymer chains is considered. The model reproduces the level of drag reduction observed over a wide range of rheological parameters. In addition, both the mean velocity and the turbulent fluctuations are predicted with good accuracy. The approach is computationally attractive because of its limited increase in computational cost in comparison with its Newtonian counterpart.  相似文献   

6.
We perform direct numerical simulation of three‐dimensional turbulent flows in a rectangular channel, with a lattice Boltzmann method, efficiently implemented on heavily parallel general purpose graphical processor units. After validating the method for a single fluid, for standard boundary layer problems, we study changes in mean and turbulent properties of particle‐laden flows, as a function of particle size and concentration. The problem of physical interest for this application is the effect of water droplets on the turbulent properties of a high‐speed air flow, near a solid surface. To do so, we use a Lagrangian tracking approach for a large number of rigid spherical point particles, whose motion is forced by drag forces caused by the fluid flow; particle effects on the latter are in turn represented by distributed volume forces in the lattice Boltzmann method. Results suggest that, while mean flow properties are only slightly affected, unless a very large concentration of particles is used, the turbulent vortices present near the boundary are significantly damped and broken down by the turbulent motion of the heavy particles, and both turbulent Reynolds stresses and the production of turbulent kinetic energy are decreased because of the particle effects. We also find that the streamwise component of turbulent velocity fluctuations is increased, while the spanwise and wall‐normal components are decreased, as compared with the single fluid channel case. Additionally, the streamwise velocity of the carrier (air) phase is slightly reduced in the logarithmic boundary layer near the solid walls. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Fully resolved direct numerical simulations (DNSs) have been performed with a high-order spectral element method to study the flow of an incompressible viscous fluid in a smooth circular pipe of radius R and axial length 25R in the turbulent flow regime at four different friction Reynolds numbers Re τ ?=?180, 360, 550 and $1\text{,}000$ . The new set of data is put into perspective with other simulation data sets, obtained in pipe, channel and boundary layer geometry. In particular, differences between different pipe DNS are highlighted. It turns out that the pressure is the variable which differs the most between pipes, channels and boundary layers, leading to significantly different mean and pressure fluctuations, potentially linked to a stronger wake region. In the buffer layer, the variation with Reynolds number of the inner peak of axial velocity fluctuation intensity is similar between channel and boundary layer flows, but lower for the pipe, while the inner peak of the pressure fluctuations show negligible differences between pipe and channel flows but is clearly lower than that for the boundary layer, which is the same behaviour as for the fluctuating wall shear stress. Finally, turbulent kinetic energy budgets are almost indistinguishable between the canonical flows close to the wall (up to y ?+??≈?100), while substantial differences are observed in production and dissipation in the outer layer. A clear Reynolds number dependency is documented for the three flow configurations.  相似文献   

8.
A second-order, single-point closure model for calculating the transport of momentum in turbulent flows is extended to cover flows that are close to solid surfaces. In such flows the proximity of a solid boundary directly influences the fluctuating pressure field within the main body of the flow and leads to a dampening of velocity fluctuations normal to the wall. These effects are accommodated through the incorporation of an additional contribution in the modelled form of the redistributive fluctuating pressure term used in the Reynolds stress transport equation. Predictions of the extended closure model are compared with available data in configurations where an air jet impinges orthogonally onto a plane surface. The inclusion of the wall reflection model is shown to result in superior predictions of mean velocities, and normal and shear stresses. In particular, normal-to-wall velocity fluctuations and shear stresses are successfully damped resulting in agreement with observations.  相似文献   

9.
The cross-correlated power spectrum of wall pressure fluctuations and the derivative of the turbulent velocity component normal to the wall is measured at a longitudinal coordinate; this spectrum, along with the mean shear, determines the contribution of the mean-shear-turbulence interaction to pressure fluctuations at a wall under a turbulent boundary layer. The spectrum is used to calculate the power spectrum and the transverse cross-correlated power spectrum of pressure fluctuations at the wall. Comparison of calculated and directly measured pressure spectra indicates that wall pressure fluctuations are almost completely determined by the mean-shear-turbulence interaction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 28–34, July–August, 1976.The author thanks G. P. Morozov-Rostovskii and Yu. A. Konokhov for fabricating a miniature hot-wire anemometer and help in carrying out the experiment.  相似文献   

10.
The drag reduction characteristics of certain high molecular weight polymers have been studied by various investigators. Because of the polymer’s ability to reduce turbulent shear stress and dependence of the boundary layer wall pressure spectral amplitude on the shear stress, polymer has the potential to suppress noise and vibration caused by the boundary layer unsteady pressures. Compared to its effect on drag reduction, polymer additive effects on turbulent boundary layer (TBL) wall pressure fluctuations have received little attention. Kadykov and Lyamshev [Sov. Phys. Acoust. 16 (1970) 59], Greshilor et al. [Sov. Phys. Acoust. 21 (1975) 247] showed that drag reducing polymer additives do indeed reduce wall pressure fluctuations, but they have not established any scaling relationship which effectively collapse data. Some effort has been made by Timothy et al. [JASA 108 (1) (2000) 71] at Penn State University to develop a scaling relationship for TBL wall pressure fluctuations that are modified by adding drag reducing polymer to pure water flow. This paper presents a theoretical model based on the work of the Timothy et al. team at ARL, Penn State University. Through this model one can estimate, reduction in TBL flow induced noise and vibration for rigid smooth surfaces due to release of drag reducing polymers in boundary layer region. Using this theoretical model, flow noise as experienced by a typical flush mounted hydrophone has been estimated for a smooth wall plate as a function of polymer additive concentration. Effect of non-dimensionalisation of the wall pressure fluctuations frequency spectra with traditional outer, inner and mixed flow variables will also be addressed in the paper. The paper also covers a model based on molecular relaxation time in polymer additives which not only reduce drag but also flow induced noise up to certain polymer concentration.  相似文献   

11.
12.
An experimental investigation was performed to find a new method for diagnosing three-dimensional flows in which obstacle bodies or cavities are included by means of a pressure wave. In rectangular closed tanks 200 × 337 × 250 mm (acrylic resin) and 300 × 450 × 400 mm (brass) filled with water, an impulsive pressure wave was generated by an instantaneous small spark discharge. The pressure waveforms were measured at a point on the wall with a high-frequency pressure transducer, and the data were recorded with an A/D converter. The measured wave fluctuations differed depending on wall conditions of the tank and on whether there was a submerged body in the water. The size of the submerged body also affected the pressure fluctuation. When acrylic resin and brass were used as wall materials, both the phase and amplitude of the reflecting wave differed. When a stainless steel sphere of diameters of 50.8, 30.2, or 19.1 mm was submerged in the tank, two kinds of pressure waves were observed, one passing through the sphere and the other diffracted around it. These results suggest the possibility of identifying bodies of simple shape by interpreting the precisely measured output pressure wave signals.  相似文献   

13.
This paper deals with intrinsic effects of compressibility, i.e. with dilatation fluctuations in response to pressure fluctuations. Three different types of turbulent flows are considered in more detail: homogeneous turbulent shear flow, wall-bounded turbulent shear flow and shock/turbulence interaction. A survey of the present knowledge in this field, mainly based on DNS data, is given. Using the linear inviscid perturbation equations a direct link between fluctuations of dilatation and of velocity in the direction of mean shear is presented for homogeneous shear flow. This relation might form the basis for a more universal pressure-dilatation model. It is conjectured that the insignificance of intrinsic compressibility effects in wall-bounded supersonic shear flow is mainly due to the impermeability constraint of the wall. To this end, a linear stability analysis of supersonic channel flow along cooled, but permeable walls has been performed based on Coleman et al.'s [5] mean flow data. It shows an increase in the moduli of eigenfunctions related to compressibility, like pressure, and in moduli of quantities derived from eigenfunctions such as ‘pressure dilatation’ and squared dilatation. Although these results do not prove our hypothesis they provide hints in this direction. Shock/turbulence interaction is viewed as a source of compressibility. Former DNS data of Hannappel and Friedrich [10] for shock/isotropic turbulence interaction showing the effect of compressibility on the amplification of fluctuations are interpreted based on linear perturbation equations.  相似文献   

14.
In this study, the effect of heat transfer on the compressible turbulent shear layer and shockwave interaction in a scramjet has been investigated. To this end, highly resolved Large Eddy Simulations (LES) are performed to explore the effect of wall thermal conditions on the behavior of a reattaching free shear layer interacting with an oblique shock in compressible turbulent flows. Various wall-to-recovery temperature ratios are considered, and results are compared to the adiabatic wall. It is found that the wall temperature affects the reattachment location and the shock behavior in the interaction region. Furthermore, fluctuating heat flux exhibits a strong intermittent behavior with severe heat transfer compared to the mean, characterized by scattered spots. The distribution of the Stanton number shows a strong heat transfer and complex pattern within the interaction, with the maximum thermal (heat transfer rates) and dynamic loads (root-mean-square wall pressure) found for the case of the cold wall. The analysis of LES data reveals that the thermal boundary condition can significantly impact the wall pressure fluctuations level. The primary mechanism for changes in the flow unsteadiness due to the wall thermal condition is linked to the reattaching shear layer, which agrees with the compressible turbulent boundary layer theory.  相似文献   

15.
This contribution is aimed at drawing the attention of the computational fluid dynamics community on the availability of an experimental database regarding turbulent lean premixed prevaporised (LPP) reacting flows stabilised behind a double symmetric, plane sudden expansion fed by two fully developed turbulent channel flows of air plus propane. This flow configuration can be thought of as a relevant benchmark for testing turbulence and/or combustion models aimed at helping for the design of reliable LPP combustion chambers. This database contains a large amount of raw and processed data regarding essentially the velocity field for one inert and three different reacting flows configurations. Additional pieces of information are available and concern the lean extinction properties and the wall static pressure evolution in the feeding channels. For the reacting flows, the presence of a large scale coherent motion is clearly visible in the velocity spectra and it is shown how a data processing based on the semi-deterministic approach that decomposes the velocity signal into the sum of its steady time average, its coherent fluctuations and its stochastic fluctuations can permit to evaluate their respective contribution to the total velocity fluctuations.  相似文献   

16.
Accurate measurements of pressure beneath turbulent wall-bounded flows are generally difficult to achieve due to signal contamination resulting from facility-induced noise, sensor vibration, etc. This is particularly true at low Reynolds numbers where the noise signature overwhelms the low-level turbulent fluctuations. In the current work a noise-cancellation technique based on an optimal filtering approach is developed. This technique is particularly useful for conditions of low signal-to-noise ratio and therefore it is well suited for low to moderate Reynolds number measurements. Unlike the conventional, subtraction-based, noise-cancellation methods, the utility of the optimal-filter scheme is not limited to the extraction of the turbulent statistics but it can be used to obtain the noise-canceledtime-series. Furthermore, the energy of the low-frequency turbulent motion lost due to the application of the noise-cancellation scheme is an order of magnitude smaller in the case of the optimal filter as compared to the subtraction scheme. Employment of the technique developed here is not confined to two-dimensional flows and therefore it is also useful for measurements in applications involving non-equilibrium flows.The authors sincerely acknowledge the support for the current investigation by the Office of Naval Research (N-00014-93-0639), NASA Space Grant (A069-5-593494) and National Science Foundation (CTS-905818)  相似文献   

17.
We have developed a probe-system for simultaneous measurement of three velocity components and pressure in turbulent flows. A miniature total pressure probe is placed adjacent to the sensors of a triple hot-film probe in order to achieve the spatial resolution which is equivalent to that of the triple hot-film probe itself. The instantaneous static pressure is calculated from measured velocity and total pressure by means of a newly developed processing method based on the Bernoulli equation for unsteady flows. The measurements were undertaken in a turbulent wing-tip vortex flow. The look-up table method is employed for the calibration of the hot-film probe so accurate velocity data could be obtained over a wide range of the flow-attack angles. It is also demonstrated that the present probe-system is capable of measuring fluctuations in both velocity and pressure in the 20?C650 Hz frequency range. The distribution of the fluctuating pressure obtained by this indirect method is in good agreement with the results from direct measurements of static pressure, demonstrating the promising performance of the present method. Furthermore, an improvement in the ability to make measurements of the velocity?Cpressure correlation across the wing-tip vortex is achieved. This improvement is possible because the effects of lateral velocity components are properly taken into account in the present formulation. The investigation regarding the transport equation budget for turbulent kinetic energy shows an anomalous structure of turbulence in this flow, mainly due to the meandering of the vortex, and the measurement of pressure diffusion is found to play an important role in the characterization of this kind of flow.  相似文献   

18.
Calculations of mean velocities and Reynolds stresses are reported for the recirculating flow established in the wake of two‐dimensional polynomial‐shaped obstacles that are symmetrical about a vertical axis and mounted in the water channel downstream of a fully developed channel flow for Re=6×104. The study involves calculations of mean and fluctuating flow properties in the streamwise and spanwise directions and include comparisons with experimental data [Almeida GP, Durão DFG, Heitor MV. Wake flows behind two‐dimensional model hills. Experimental Thermal and Fluid Science 1993; 7: 87–101] for flow around a single obstacle with data resulting from the interaction of consecutive obstacles, using two versions of the low‐Reynolds number differential second‐moment (DSM) closure model. The results include analysis of the turbulent stresses in local flow co‐ordinates and reveal flow structure qualitatively similar to that found in other turbulent flows with a reattachment zone. It is found that the standard isotropization of production model (IPM), based on that proposed by Gibson and Launder [Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics 1978; 86(3): 191–511], with the incorporation of the wall reflection model of Craft and Launder [New wall‐reflection model applied to the turbulent impinging jet. AIAA Journal 1992; 32(12): 2970–2972] predicts the mean velocities quite well, but underestimates the size of the recirculation region and turbulent quantities in the shear layer. These inadequacies are circumvented by adopting a new cubic Reynolds stress closure scheme based on that more recently developed by Craft and Launder [A Reynolds stress closure designed for complex geometries. International Journal of Heat and Fluid Flow 1996; 17: 245–254] which satisfies the two component limit (TCL) of turbulence. In this model the geometry‐specific quantities, such as the wall‐normal vector or wall distance, are replaced by invariant dimensionless gradient indicators. Also, the model captures the diverse behaviour of the different components of the stress dissipation, εij, near the wall and uses a novel decomposition for the fluctuating pressure terms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
A specially-designed rotating rig for producing near Couette flow was used in the calibration of a marginally elevated hot-wire shear stress probe. The probe was then used for measurements in both the turbulent boundary layer and pipe flows. Results showed that the mean wall shear stress can be accurately predicted and the near wall statistical quantities of intensity, skewness and flatness of shear stress fluctuations concurred well with previous works, thereby supporting the notion of a time-resolved shear stress probe for turbulent flows.  相似文献   

20.
A spatially-evolving three-dimensional boundary layer, subjected to a streamwise-varying spanwise-homogeneous pressure gradient, equivalent to a body force, is investigated by way of direct numerical simulation. The pressure gradient, prescribed to change its sign half-way along the boundary layer, provokes strong skewing of the velocity vector, with a layer of nearly collateral flow forming close to the wall up to the position of maximum spanwise velocity. A wide range of flow-physical properties have been studied, with particular emphasis on the near-wall layer, including second-moments, major budget contributions and wall-normal two-point correlations of velocity fluctuations and their angles, relative to wall-shear fluctuations. The results illustrate the complexity caused by skewing, including a damping in turbulent mixing and a significant lag between strains and stresses. The study has been undertaken in the context of efforts to develop and test novel hybrid LES–RANS schemes for non-equilibrium near-wall flows, with an emphasis on three-dimensional near-wall straining. Fundamental flow-physical issues aside, the data derived should be of particular relevance to a priori studies of second-moment RANS closure and the development and validation of RANS-type near-wall approximations implemented in LES schemes for high-Reynolds-number complex flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号