首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molar enthalpies of solution of 2-aminopyridine at various molalities were measured at T=298.15 K in double-distilled water by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the molar enthalpy of solution of the title compound at infinite dilution was calculated to be DsolHm = 14.34 kJ·mol-1\Delta_{\mathrm{sol}}H_{\mathrm{m}}^{\infty} = 14.34~\mbox{kJ}\cdot\mbox{mol}^{-1}, and Pitzer’s ion interaction parameters bMX(0)L, bMX(1)L\beta_{\mathrm{MX}}^{(0)L}, \beta_{\mathrm{MX}}^{(1)L}, and CMXfLC_{\mathrm{MX}}^{\phi L} were obtained. Values of the relative apparent molar enthalpies ( φ L) and relative partial molar enthalpies of the compound ([`(L)]2)\bar{L}_{2}) were derived from the experimental enthalpies of solution of the compound. The standard molar enthalpy of formation of the cation C5H7N2 +\mathrm{C}_{5}\mathrm{H}_{7}\mathrm{N}_{2}^{ +} in aqueous solution was calculated to be DfHmo(C5H7N2+,aq)=-(2.096±0.801) kJ·mol-1\Delta_{\mathrm{f}}H_{\mathrm{m}}^{\mathrm{o}}(\mathrm{C}_{5}\mathrm{H}_{7}\mathrm{N}_{2}^{+},\mbox{aq})=-(2.096\pm 0.801)~\mbox{kJ}\cdot\mbox{mol}^{-1}.  相似文献   

2.
A brown and transparent ionic liquid (IL), [C4mim][FeCl4], was prepared by mixing anhydrous FeCl3 with 1-butyl-3-methylimidazolium chloride ([C4mim][Cl]), with molar ratio 1/1 under stirring in a glove box filled with dry argon. The molar enthalpies of solution, Δs H m, of [C4mim][FeCl4], in water with various molalities were determined by a solution-reaction isoperibol calorimeter at 298.15 K. Considering the hydrolyzation of anion [FeCl4] in dissolution process of the IL, a new method of determining the standard molar enthalpy of solution, Δs H m0, was put forward on the bases of Pitzer solution theory of mixed electrolytes. The values of Δs H m0 and the sum of Pitzer parameters: and were obtained, respectively. In terms of thermodynamic cycle and the lattice energy of IL calculated by Glasser’s lattice energy theory of ILs, the dissociation enthalpy of anion [FeCl4], ΔH dis≈5650 kJ mol−1, for the reaction: [FeCl4](g)→Fe3+(g)+4Cl(g), was estimated. It is shown that large hydration enthalpies of ions have been compensated by large the dissociation enthalpy of [FeCl4] anion, Δd H m, in dissolution process of the IL.  相似文献   

3.
The integral enthalpies of solution (Δsol H m ) of L-serine in water-alcohol (ethanol, n-propanol, isopropanol) mixtures were measured over the range of alcohol concentrations up to 0.32 mole fractions. The standard enthalpy of solution (Δsol H°), enthalpy of transfer of L-serine from water into a mixed solvent (Δtr H°), and enthalpy of solvation (Δsolv H°) were calculated. The dependences of Δsol H°, Δsolv H°, and Δtr H° on the composition of mixtures had extrema. The calculated enthalpy coefficients of the pair interactions of L-serine with alcohol molecules were positive and increased along the series ethanol, n-propanol, isopropanol. The data obtained were interpreted in terms of different types of interactions in solutions and the influence of the nature of amino acid residues on the thermochemical solution characteristics. Original Russian Text ? I.N. Mezhevoi, V.G. Badelin, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 4, pp. 789–791.  相似文献   

4.
The enthalpies of solution of tetraethyl- and tetra-n-hexylammonium bromides have been measured in mixtures of formamide with ethylene glycol at 298.15 and 313.15 K in the whole mole fraction range by the calorimetric method. The standard enthalpies of solution in binary mixtures have been calculated with Redlich–Rosenfeld–Meyer type equation. The enthalpy and heat capacity parameters of pair interaction of organic electrolytes with EG in FA and with FA in EG have been computed and discussed. The enthalpy interaction parameters of single ions with EG in FA medium have been evaluated and compared with those for ion–water and ion–MeOH interaction in FA. The standard heat capacities of solution have been evaluated. The excess enthalpies of solution, Δsol H E, of Et4NBr, Bu4NBr, and Hex4NBr have been determined. The Δsol H E values are positive for Et4NBr and negative for Bu4NBr and Hex4NBr and become more negative from Bu4NBr to Hex4NBr.  相似文献   

5.
Enthalpy of formation of the perovskite-related oxide BaCe0.9In0.1O2.95 has been determined at 298.15 K by solution calorimetry. Solution enthalpies of barium cerate doped with indium and mixture of BaCl2, CeCl3, InCl3 in ratio 1:0.9:0.1 have been measured in 1 M HCl with 0.1 M KI. The standard formation enthalpy of BaCe0.9In0.1O2.95 has been calculated as −1611.7±2.6 kJ mol−1. Room-temperature stability of this compound has been assessed in terms of parent binary oxides. The formation enthalpy of barium cerate doped by indium from the mixture of binary oxides is Δox H 0 (298.15 K)=−36.2±3.4 kJ mol−1.  相似文献   

6.
In this article, the enthalpy of dissolution for oxymatrine in 0.15 M citric acid solution is measured using a RD496-2000 Calvet Microcalorimeter at 36.5 °C under atmospheric pressure. The differential enthalpy (Δ dif H m) and molar enthalpy (Δ sol H m) were determined for oxymatrine dissolution in 0.15 M citric acid solution. On the basis of these experimental data and calculated results, the kinetic equation, half-life, Δ sol H m, Δ sol G m, and Δ sol S m of the dissolution process were also obtained.  相似文献   

7.
The integral enthalpies of dissolution Δsol H m of l-cysteine and l-asparagine in mixtures of water with acetonitrile and dimethyl sulfoxide at the concentration of organic solvent up to 0.32 molar fractions were measured by means of dissolution calorimetry. The standard enthalpies of dissolution (Δsol H°) and transfer (Δtrans H°) of the amino acids from water to a mixed solvent were calculated. The enthalpy coefficients of pair interactions for L-cysteine and L-asparagine with cosolvent molecules are positive, except for the L-asparagine-water-acetonitrile system. The concepts on the prevailing effect of specific interactions in solutions and the influence of the nature of the cosolvents and lateral substituents of the amino acids on the thermochemical characteristics of dissolution were used to explain the data obtained.  相似文献   

8.
The enthalpies of dissolution of glycine (Gly) and L-α-alanine (Ala) in water at 288.15–318.15 K were measured. The results were compared with the earlier obtained data for L-α-phenylalanine (Phe) and L-α-histidine (His). The standard enthalpies of dissolution (Δsoln H 0) and differences (ΔC p 0 ) between the limiting partial molar heat capacity of the amino acids in solution and the heat capacity of the amino acids in the crystalline state were calculated in the temperature interval 273–373 K. Changes in the entropy of dissolution (ΔΔsoln S 0) and reduced Gibbs energy [Δ (Δsoln G 0/T)] in the temperature interval from 273 to 373 K were determined from the known thermodynamic relationships. The ΔC p 0 value is negative for hydrophilic glycine and positive for other amino acids. The ΔΔsoln S 0 values increase with an increase in the hydrophobicity of the amino acids. The Δ(Δsoln G 0/T) values become more negative in the order Ala, Phe, Gly, His. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 711–714, April, 2007.  相似文献   

9.
Low-temperature heat capacities of a solid complex Zn(Val)SO4·H2O(s) were measured by a precision automated adiabatic calorimeter over the temperature range between 78 and 373 K. The initial dehydration temperature of the coordination compound was determined to be, T D=327.05 K, by analysis of the heat-capacity curve. The experimental values of molar heat capacities were fitted to a polynomial equation of heat capacities (C p,m) with the reduced temperatures (x), [x=f (T)], by least square method. The polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the complex relative to the standard reference temperature 298.15 K were given with the interval of 5 K. Enthalpies of dissolution of the [ZnSO4·7H2O(s)+Val(s)] (Δsol H m,l 0) and the Zn(Val)SO4·H2O(s) (Δsol H m,2 0) in 100.00 mL of 2 mol dm–3 HCl(aq) at T=298.15 K were determined to be, Δsol H m,l 0=(94.588±0.025) kJ mol–1 and Δsol H m,2 0=–(46.118±0.055) kJ mol–1, by means of a homemade isoperibol solution–reaction calorimeter. The standard molar enthalpy of formation of the compound was determined as: Δf H m 0 (Zn(Val)SO4·H2O(s), 298.15 K)=–(1850.97±1.92) kJ mol–1, from the enthalpies of dissolution and other auxiliary thermodynamic data through a Hess thermochemical cycle. Furthermore, the reliability of the Hess thermochemical cycle was verified by comparing UV/Vis spectra and the refractive indexes of solution A (from dissolution of the [ZnSO4·7H2O(s)+Val(s)] mixture in 2 mol dm–3 hydrochloric acid) and solution A’ (from dissolution of the complex Zn(Val)SO4·H2O(s) in 2 mol dm–3 hydrochloric acid).  相似文献   

10.
The molar enthalpies of solution of an alanine-based ionic liquid (IL) [C4mim][Ala], 1-butyl-3-methylimidazolium alanine, containing various amount of water and various molalities Δsol H m(wc), were measured with a solution-reaction isoperibol calorimeter at (298.15±0.01) K, where wc denotes water content. According to Archer’s method, the standard molar enthalpies of solution of [C4mim][Ala] containing known amounts of water, DsolHmo(wc)\Delta_{\mathrm{sol}}H_{\mathrm{m}}^{\mathrm{o}}(\mathrm{wc}) , were obtained. In order to eliminate the effect of the small amount of residual water in the source [C4mim][Ala], a linear fitting of DsolHmo(wc)\Delta_{\mathrm{sol}}H_{\mathrm{m}}^{\mathrm{o}}(\mathrm{wc}) against water content was carried out, yielding a good straight line where the intercept is the standard molar enthalpy of solution of anhydrous [C4mim][Ala], DsolHmo(pure IL)=-(61.42±0.08)\Delta_{\mathrm{sol}}H_{\mathrm{m}}^{\mathrm{o}}(\mathrm{pure}\ \mathrm{IL})=-(61.42\pm 0.08) kJ⋅mol−1. The hydration enthalpy of the alanine anion [Ala] was estimated using Glasser’s lattice energy theory.  相似文献   

11.
Crystal structure of 1-dodecylamine hydrochloride (C12H28NCl)(s) has been determined by an X-ray crystallography. Lattice potential energy and the molar volumes of the solid compound and its cation were respectively obtained. The enthalpy of dissolution of the compound was measured by an isoperibol solution-reaction calorimeter at 298.15 K. The molar enthalpy of dissolution at infinite dilution was determined to be , and relative apparent molar enthalpies (ΦL), relative partial molar enthalpies (L2) of the compound and relative partial molar enthalpies (L1) of the solvent (double distilled water) at different concentrations m (mol kg−1) were obtained through fitted multiple regression equation by means of Pitzer's theory. Finally, hydration enthalpies of the substance and its cation were calculated by designing a thermochemical cycle in accordance with lattice potential energy and the molar enthalpy of dissolution at infinite dilution .  相似文献   

12.
The influence of doping with niobium on the structure and oxygen nonstoichiometry of strontium ferrite SrFe1 − x Nb x O3 − δ (x = 0.05, 0.1, 0.2, 0.3, and 0.4) was studied. The content of oxygen in the doped derivatives was determined by coulometric titration as a function of temperature (650–950°C) and oxygen partial pressure in the gas phase (10−4−1 atm). The partial molar enthalpies Δ(x, δ) and entropies Δ(x, δ) of oxygen in SrFe1 − x Nb x O3 − δ were calculated. An analysis of Δ(x, δ) dependences showed that the model of a random distribution of ions and vacancies over accessible sites in the oxygen sublattice allowed the experimental data to be described satisfactorily. An increase in the partial enthalpy Δ(x, δ) as nonstoichiometry δ decreased was indicative of weak repulsive interactions between oxygen ions in the structure of SrFe1 − x Nb x O3 − δ. Original Russian Text ? P.V. Anikina, A.A. Markov, M.V. Patrakeev, I.A. Leonidov, V.L. Kozhevnikov, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 5, pp. 811–817.  相似文献   

13.
The molar enthalpies of solution of VOSO4⋅3.52H2O(s) at various molalities in water and in aqueous sulfuric acid (0.1 mol⋅kg−1), Δsol H m, were measured by a solution-reaction isoperibol calorimeter at 298.15±0.01 K. An improved Archer’s method to estimate the standard molar enthalpy of solution, DsolH0m\Delta_{\mathrm{sol}}H^{0}_{\mathrm{m}}, was put forward. In terms of the improved method, the values of DsolH0m=-24.12±0.03 kJ·mol-1\Delta_{\mathrm{sol}}H^{0}_{\mathrm{m}}=-24.12\pm 0.03~\mbox{kJ}{\cdot}\mbox{mol}^{-1} of VOSO4⋅3.52H2O(s) in water and DsolH0m=-15.38±0.06 kJ·mol-1\Delta_{\mathrm{sol}}H^{0}_{\mathrm{m}}=-15.38\pm 0.06~\mbox{kJ}{\cdot}\mbox{mol}^{-1} in aqueous sulfuric acid were obtained, respectively. The data indicates that the energy state of VOSO4 in aqueous H2SO4 is higher than that in pure water.  相似文献   

14.
The dissolution properties of 2-(1,1-dinitromethylene)-1,3-diazepentane in N-methyl pyrrolidone(NMP) were studied with a RD496-2000 Calvet microcalorimeter at three different temperatures. The measured molar enthalpies (Δsol H) for 2-(1,1-dinitromethylene)-1,3-diazepentane in NMP at T=(298.15,306.15,311.15) K are (5.02, 5.59, 6.67) kJ⋅mol−1, respectively. The differential molar enthalpies (Δdif H), the specific enthalpies (Δsol h), and the standard heat effect (Q Θ) for 2-(1,1-dinitromethylene)-1,3-diazepentane in NMP were obtained at the same time. The kinetic parameters of activation energy E and pre-exponential factor A are 2.26×104 J⋅mol−1 and 102.06 s−1, which indicate that NMP is a good solvent for the title compound.  相似文献   

15.
By the method of dissolution calorimetry integral enthalpies of dissolution Δsol H m of L-serine are measured in the mixtures of water with glycerol, ethylene glycol, and 1,2-propylene glycol at the concentration of the organic solvent up to 0.42 mole fraction. The standard values of enthalpies of dissolution (Δsol H 0) and transfer (Δtr H 0) of amino acids from water to mixed solvents are calculated. The calculated values of the enthalpy coefficients of pair interactions of L-serine with the molecules of co-solvents are positive. The data obtained are interpreted in terms of prevalence of different types of interactions in solutions and the influence of nature of co-solvents on the thermochemical characteristics of the dissolved amino acids.  相似文献   

16.
The enthalpies of solution in water for five new light rare earth ternary complexes RE(Gly)4Im(ClO4)3 2H2O (RE = La, Pr, Nd, Sm, Eu; Gly‐glycine; Im‐imidazole) were measured by means of a Calvet microcalorimeter. The empirical formula of enthalpy of solution (ΔsolH), relative apparent molar enthalpy (πLi), relative partial molar enthalpy (Li) and enthalpy of dilution (ΔdllH1,2) were drawn up by the data of enthalpies of solution of these complexes. From three plots of the values of standard enthalpy of solution Δsol H?, πLi, Li) versus the values of ionic radius (r) of the light rare earth elements, the grouping effect of lanthanide was observed, showing that the coordination bond between rare earth ion and ligand possesses a certain extent of the property of a covalent bond. The standard enthalpies of solution in water of similar complexes, Ce(Gly)4Im(ClO4)3.2H2O were estimated according to the plot of ΔsolH?, versus r.  相似文献   

17.
Condensed and gas phase enthalpies of formation of 3:4,5:6-dibenzo-2-hydroxymethylene-cyclohepta-3,5-dienenone (1, (−199.1 ± 16.4), (−70.5 ± 20.5) kJ mol−1, respectively) and 3,4,6,7-dibenzobicyclo[3.2.1]nona-3,6-dien-2-one (2, (−79.7 ± 22.9), (20.1 ± 23.1) kJ mol−1) are reported. Sublimation enthalpies at T=298.15 K for these compounds were evaluated by combining the fusion enthalpies at T = 298.15 K (1, (12.5 ± 1.8); 2, (5.3 ± 1.7) kJ mol−1) adjusted from DSC measurements at the melting temperature (1, (T fus, 357.7 K, 16.9 ± 1.3 kJ mol−1)); 2, (T fus, 383.3 K, 10.9 ± 0.1) kJ mol−1) with the vaporization enthalpies at T = 298.15 K (1, (116.1 ± 12.1); 2, (94.5 ± 2.2) kJ mol−1) measured by correlation-gas chromatography. The vaporization enthalpies of benzoin ((98.5 ± 12.5) kJ mol−1) and 7-heptadecanone ((94.5 ± 1.8) kJ mol−1) at T = 298.15 K and the fusion enthalpy of phenyl salicylate (T fus, 312.7 K, 18.4 ± 0.5) kJ mol−1) were also determined for the correlations. The crystal structure of 1 was determined by X-ray crystallography. Compound 1 exists entirely in the enol form and resembles the crystal structure found for benzoylacetone.  相似文献   

18.
A way to calculate the enthalpic contributions of each component of the mixture of activated carbon and water to the immersion enthalpy using the concepts of the solution enthalpies is presented. By determining the immersion enthalpies of a microporous activated carbon in water, with values that are between –18.97 and −27.21 Jg−1, from these and the mass ratio of activated carbon and water, differential enthalpies for the activated carbon, ΔHDIFacH_{{\rm DIF}_{\rm ac}} and water, ΔHDIFwH_{{\rm DIF}_{\rm w}} are calculated, and values between –15.95 and –26.81 Jg−1 and between –19.14 and –42.45 Jg−1, respectively are obtained. For low ratios of the mixture, the components’ contributions to the immersion enthalpy of activated carbon and water differ by 3.20 Jg−1.  相似文献   

19.
The heats of dissolution of tetramethyl-bis-carbamide (the pharmaceutical Mebicarum) in H2O and D2O were measured at 288.15, 298.15, and 318.15 K using a sealed microcalorimeter with an isothermal shell. The error of measurements did not exceed 0.2%. The limiting molar enthalpies of dissolution Δsol H n and the H/D-isotope enthalpy effects of hydration δΔhydr H n (H2O → D2O) were determined. Different effects of temperature on the pattern of variation of δΔ hydr H n were found: when T ≤ 315 K, this value is positive and decreases with T, while for T ≥ 315 K, hydration of tetramethyl-bis-carbamide upon replacement of H2O by D2O progressively becomes less endothermic. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 715–717, April, 2006.  相似文献   

20.
Relative enthalpies for low-and high-temperature modifications of Na3FeF6 and for the Na3FeF6 melt have been measured by drop calorimetry in the temperature range 723–1318 K. Enthalpy of modification transition at 920 K, δtrans H(Na3FeF6, 920 K) = (19 ± 3) kJ mol−1 and enthalpy of fusion at the temperature of fusion 1255 K, δfusH(Na3FeF6, 1255 K) = (89 ± 3) kJ mol−1 have been determined from the experimental data. Following heat capacities were obtained for the crystalline phases and for the melt, respectively: C p(Na3FeF6, cr, α) = (294 ± 14) J (mol K)−1, for 723 = T/K ≤ 920, C p(Na3FeF6, cr, β) = (300 ± 11) J (mol K)−1 for 920 ≤ T/K = 1233 and C p(Na3FeF6, melt) = (275 ± 22) J (mol K)−1 for 1258 ≤ T/K ≤ 1318. The obtained enthalpies indicate that melting of Na3FeF6 proceeds through a continuous series of temperature dependent equilibrium states, likely associated with the production of a solid solution.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号