首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
13(S)-hydroperoxy- and 13(S)-hydroxyoctadeca-9,11-dienoic acids (1a/b), 15(S)-hydroperoxy- and 15(S)-hydroxyeicosa-5,8,11,13-tetraenoic acids (2a/b), and their methyl esters reacted smoothly with NO2- in phosphate buffer at pH 3-5.5 and at 37 degrees C to afford mixtures of products. 1b methyl ester gave mainly the 9-nitro derivative 3b methyl ester (11% yield) and a peculiar breakdown product identified as the novel 4-nitro-2-oximinoalk-3-enal derivative 4 methyl ester (15% yield). By GC-MS hexanal was also detected among the products. Structures 3b and 4 methyl esters were secured by 15N NMR analysis of the products prepared from 1b methyl ester upon reaction with Na15NO2. 4 methyl ester (14% yield) was also obtained from 1a methyl ester along with the nitrated hydroperoxy derivative 3a methyl ester (10% yield). Under the same conditions, 2a/b methyl esters gave mainly the corresponding nitrated derivatives 5a/b, with no detectable breakdown products, whereas the model compound (E,E)-2,4-hexadienol (6) afforded two main nitrated derivatives identified as 7 and 8. A reaction pathway for 1a/b methyl esters was proposed involving conversion of nitronitrosooxyhydro(pero)xy intermediates which would partition between two competing routes, viz., loss of HNO2, to give 3a/b methyl esters, and a remarkably facile fission leading to 4 methyl ester and hexanal.  相似文献   

2.
This contribution describes a concise synthesis to ethyl trans-[(4S)-methoxy-(2S)-pyrrolidinylmethoxy]cyclohexanecarboxylate (2b) as a key intermediate of very late antigen-4 (VLA-4) antagonist trans-4-[1-[[2,5-dichloro-4-(1-methyl-3-indolylcarboxyamide)phenyl]acetyl]-(4S)-methoxy-(2S)-pyrrolidinylmethoxy]cyclohexanecarboxylic acid (1). The synthesis employs a reductive etherification as a key reaction using (2S,4S)-1-benzyloxycarbonyl-4-methoxypyrrolidine-2-carboxyaldehyde (12) and trans-4-triethylsilyloxycyclohexanecarboxilic acid ethyl ester (13b). This synthesis provides 2b in 6 steps with 38% overall yield from commercially available starting material.  相似文献   

3.
Four novel lysophosphatidylcholine (lysoPC) analogues, (S)-N-stearoyl-O-phosphocholineserine methyl ester [(S)-1a], (R)-1-lyso-2-stearoylamino-2-deoxy-sn-glycero-3-phosphatidylcholine [(R)-2a], (R)-N-stearoyl-O-phosphocholineserine methyl ester [(R)-1b], and (S)-1-lyso-2-stearoylamino-2-deoxy-sn-glycero-3-phosphatidylcholine [(S)-2b], were synthesized starting from serine as a chiral template. These synthetic compounds exhibited greatly enhanced hyphal transition inhibitory activity in Candida as compared to the natural lysoPC.  相似文献   

4.
Asymmetric syntheses of (2S,3S)-3-(tert-butoxycarbonyl)-2-piperidinecarboxylic acid (1b), (3R,4S)-4-(tert-butoxycarbonyl)-3-piperidinecarboxylic acid (2b), and their corresponding N-Boc and N-Cbz protected analogues 8a,b and 17a,b are described. Enantiomerically pure 1b has been synthesized in five steps starting from L-aspartic acid beta-tert-butyl ester. Tribenzylation of the starting material followed by alkylation with allyl iodide using KHMDS produces the key intermediate 5a in a 6:1 diastereomeric excess. Upon hydroboration, the alcohol 6a is oxidized, and the resulting aldehyde 7 is subjected to a ring closure via reductive amination, providing 1b in an overall yield of 38%. Optically pure 2b has been synthesized beginning with N-Cbz-beta-alanine. The synthesis involves the induction of the first stereogenic center using Evans's chemistry and sequential LDA-promoted alkylations with tert-butyl bromoacetate and allyl iodide. Further elaboration by ozonolysis and reductive amination affords 2b in an overall yield of 28%.  相似文献   

5.
Selective addition of the chiral, sulfonimidoyl substituted bis(allyl)titanium complexes 5a-d, which are configurationally labile in regard to the Calpha-atoms, to N-toluenesulfonyl (Ts)-, N-2-trimethylsilylethanesulfonyl (SES)-, and N-tert-butylsulfonyl (Bus) alpha-imino ester (9a-c) in the presence of Ti(OiPr)(4) and ClTi(OiPr)(3) afforded with high regio- and diastereoselectivities in good yields the (syn, E)-configured beta-alkyl-gamma,delta-unsaturated alpha-amino acid derivatives 2a-g, which carry a chiral, electron-withdrawing nucleofuge at the delta-position and a cyclohexyl, an isopropyl, a phenyl, and a methyl group at the beta-position. Addition of the cyclic bis(allyl)titanium complex 14 to N-Bus alpha-imino ester 9c afforded with similar high regio- and diastereoselectivities the (E)- and (Z)-configured amino acid derivatives (E)-8 and (Z)-8. Reaction of complexes 5a-d with alpha-imino esters 9a-c in the presence of Ti(OiPr)(4) occurs stepwise to give first the mono(allyl)titanium complexes containing 2a-g as ligands, which react in the presence of ClTi(OiPr)(3) with a second molecule of 9a-c with formation of two molecules of 2a-g. Formation of (S,R,E)-configured homoallylic amines 2a-g entails Si,Re,E processes of alpha-imino esters 9a-c with the (R,R)-configured bis(allyl)titanium complexes (R,R)-5a-d and (R)-configured mono(allyl)titanium complexes (R)-17a-d, both of which are most likely in rapid equilibrium with their (S,S)-diastereomers and (S)-diastereomers, respectively. Interestingly, in the reaction of 5a-d with aldehydes, the (S,S)-configured complexes (S,S)-5a-d are the ones which react faster. Reaction of the N-titanated amino acid derivatives Ti-2a and Ti-2b with N-Ts alpha-imino ester 9a led to the highly diastereoselective formation of imidazolidinones 15a and 15b, respectively. Cleavage of the sulfonamide group of the N-Bus amino acid derivative 2d with CF(3)SO(3)H gave quantitatively the sulfonimidoyl functionalized amino acid H-2d. A Ni-catalyzed cross-coupling reaction of the amino acid derivative 2e with ZnPh(2) led to a substitution of the sulfonimidoyl group by a phenyl group and furnished the enantiomerically pure protected alpha-amino acid Bus-1. Two new N-sulfonyl alpha-imino esters, the SES and the Bus alpha-imino esters 9b and 9c, respectively, have been synthesized from the corresponding sulfonamides by the Kresze method in medium to good yields. The N-SES alpha-imino ester 9b and the N-Bus alpha-imino ester 9c should find many synthetic applications, in particular, in cases where the N-Ts alpha-imino ester 9a had been used before.  相似文献   

6.
A short and efficient synthesis of L-2',3'-dideoxy-2'-trifluoromethyl-4'-thiocytidines is described. (2R,4S/2S,4S)-5-(tert-Butyldimethylsiloxy)-2-trifluoromethylpentan-4-olide (3a and 3b) are prepared from alpha-trifluoromethyl-alpha,beta-unsaturated ester (1) in three steps and converted to compounds 6a and 6b. The corresponding 1-O-acetyl derivatives 8a and 8b were obtained via the usual Pummerer rearrangement from 6a and 6b in two steps, which were in turn used to synthesize L-4'-thiocytidines 10a and 10b.  相似文献   

7.
(S)-5,5,5,5′,5′,5′-Hexafluoroleucine ((S)- 13 ) of 81 % ee is prepared from hexafluoroacetone ( l ) and ethyl bromopyruvate (= ethyl 2-oxopropanoate) in 7 steps with an overall yield of 18% (Schemes 1 and 2). Key step in this sequence is the highly enantioselective reduction of the carbonyl group in α-keto ester 4 either by bakers' yeast (91 % ee) or by ‘catecholborane’ 6 utilizing an oxazaborolidine catalyst, yielding hydroxy ester (R)- 5 with 99% ee. The absolute configuration was determined by X-ray analysis of the HCl adduct (S,R)- 9b of (2S)-N-[(R)- l-phenylethyl]-5,5,5,5′,5′,5′-hexafluoroleucine ethyl ester.  相似文献   

8.
2,3-Dihydro-3-(4'-hydroxyphenyl)-1,1,3-trimethyl-1H-inden-5-ol, 1, is a chiral bisphenol useful for preparation of polymers. Previous screening of commercial hydrolases identified lipase from Chromobacterium viscosum (CVL) as a highly regio- and enantioselective catalyst for hydrolysis of diesters of 1. The regioselectivity was > or =30:1 favoring the ester at the 5-position, while the enantioselectivity varied with acyl chain length, showing the highest enantioselectivity (E = 48 +/- 20 S) for the dibutanoate ester. In this paper, we use a combination of nonsymmetrical diesters and computer modeling to identify that the remote ester group controls the enantioselectivity. First, we prepared nonsymmetrical diesters of (+/-)-1 using another regioselective, but nonenantioselective, reaction. Lipase from Candida rugosa (CRL) showed the opposite regioselectivity (>30:1), allowing removal of the ester at the 4'-position (the remote ester in the CVL-catalyzed reaction). Regioselective hydrolysis of (+/-)-1-dibutanoate (150 g) gave (+/-)-1-5-dibutanoate (89 g, 71% yield). Acylation gave nonsymmetrical diesters that varied at the 4'-position. With no ester at the 4'-position, CVL showed no enantioselectivity, while hindered esters (3,3-dimethylbutanoate) reacted 20 times more slowly, but retained enantioselectivity (E = 22). These results indicate that the remote ester group can control the enantioselectivity. Computer modeling confirmed these results and provided molecular details. A model of a phosphonate transition state analogue fit easily in the active site of the open conformation of CVL. A large hydrophobic pocket tilts to one side above the catalytic machinery. The tilt permits the remote ester at the 4'-position of only the (S)-enantiomer to bind in this pocket. The butanoate ester fits and fills this pocket and shows high enantioselectivity. Both smaller and larger ester groups show low enantioselectivity because small ester groups cannot fill this pocket, while longer ester groups extend beyond the pocket. An improved large-scale resolution of 1-dibutanoate with CVL gave (R)-(+)-1-dibutanoate (269 g, 47% yield, 92% ee) and (S)-(-)-1-4'-monobutanoate (245 g, 52% yield, 89% ee). Methanolysis yielded (R)-(+)-1 (169 g, 40% overall yield, >97% ee) and (S)-(-)-1 (122 g, 36% overall yield, >96% ee).  相似文献   

9.
A formal enantioselective synthesis of benazepril.HCl (4), an anti- hypertensive drug, is reported. Our synthesis employed an asymmetric aza-Michael addition of L-homophenylalanine ethyl ester (LHPE, 1) to 4-(2-nitrophenyl)-4-oxo- but-2-enoic acid methyl ester (6) as the key step to prepare (2S,3'S)-2-(2-oxo-2,3,4,5- tetrahydro-1H-benzo[b]azepin-3-ylamino)-4-phenylbutyric acid ethyl ester (8), which is the key intermediate leading to benazepril x HCl (4).  相似文献   

10.
The total synthesis of plakortide E (1a) is reported. A novel palladium-catalyzed approach towards 1,2-dioxolanes as well as an alternative substrate-controlled route leading exclusively to cis-highly substituted 1,2-dioxolanes have been developed. A lipase-catalyzed kinetic resolution was employed to provide optically pure 1,2-dioxolane central cores. Coupling of the central cores and side chains was achieved by a modified Negishi reaction. All four isomeric structures of plakortide E methyl ester, namely, 26a-d were synthesized. One of the structures, 26d, was shown to be identical with the natural plakortide E methyl ester on the basis of (1)H, (13)C NMR spectra and specific rotation comparisons. With the plakortide E methyl ester (4S,6R,10R)-(-)-cis-26d and its other three isomers in hand, we successfully converted them into (3S,4S,6R,10R)-plakortone B (2a), and its isomers ent-2a, 2b and ent-2b via an intramolecular oxa-Michael addition/lactonization cascade reaction. Finally, saponification converted 1,2-dioxolane 26d into plakortide E (1a) whose absolute configuration (4S,6R,10R) was confirmed by comparison of spectral and physical data with those reported.  相似文献   

11.
A rearrangement reaction involving the indole nucleus was investigated using stereochemical markers and low-temperature NMR experiments. Treatment of (3S, 4S)-3-hydroxy-4-(2-phenyl-1H-indol-3-yl)-piperidine-1-carboxylic acid benzyl ester (>90% ee) with diethylaminosulfur trifluoride gave stereospecifically (3S, 4S)-4-fluoro-3-(2-phenyl-1H-indol-3-yl)-piperidine-1-carboxylic acid benzyl ester (>90% ee) with complete regioselectivity. The initial formation of a reactive spirocyclopropyl-3H-indole intermediate is believed to be responsible for the stereo- and regiochemical outcome of the reaction.  相似文献   

12.
Stereoselective syntheses of both the natural (C5'- S) and unnatural (C5'- R) diastereoisomers of uracil polyoxin C methyl ester have been developed. The key stereocontrolled step involves nucleophilic addition of trimethylsilyl cyanide to the appropriate chiral sulfinimine derived from 2',3'-protected 5'-formyluridine and (S)-(-)-tert-butanesulfinamide or (R)-(+)-tert-butanesulfinamide, respectively. A variety of substrate mimics designed to function as inhibitors of chitin synthase have been synthesized by conjugation of the methyl ester of uracil polyoxin C (UPOC) with activated isoxazole carboxylic acids. Amide bond formation was accomplished via coupling of the amino functionality of UPOC methyl ester with a free isoxazole acid using HBTU or alternatively an isoxazole pentafluorophenyl ester. The substrate mimics incorporate features of the nucleoside-peptide antibiotics, the polyoxins and the nikkomycins, as well as features of the transition state structure expected during polymerization of the natural chitin synthase substrate uridine diphosphoryl-N-acetylglucosamine (UDP-GlcNAc), namely, a metal-binding site and glycosyl oxocarbenium ion mimic.  相似文献   

13.
A Diels-Alder cyclization proposed to occur during polyketide synthase assembly of the bicyclic core of lovastatin (1) (mevinolin) by Aspergillus terreus MF 4845 was examined via the synthesis of the N-acetylcysteamine (NAC) thioester of [2,11-(13)C(2)]-(E,E,E)-(R)-6-methyldodecatri-2,8,10-enoate (5a). In vitro Diels-Alder cyclization of the corresponding unlabeled NAC ester 5b, ethyl ester 18b, and acid 20b yielded two analogous diastereomers in each case, under either thermal or Lewis acid-catalyzed conditions. The reaction of thioester 5 proceeds readily at 22 degrees C in aqueous media. For 18b, one product is trans-fused ethyl (1R,2R,4aS, 6R,8aR)-1,2,4a,5,6,7,8,8a-octahydro-2,6-dimethylnaphthalene-1-carboxylate (30) (endo product), and the other is cis-fused ethyl (1R,2S,4aR,6R,8aR)-1,2,4a,5,6,7,8,8a-octahydro-2,6-dimethylnaphthalene-1-carboxylate (31) (exo product). Isomer 21 with stereochemistry analogous to 4a,5-dihydromonacolin L (2), a precursor of 1, was made by transformation of a tricyclic lactone, (1S,2S,4aR,6S,8S,8aS)-1-(ethoxycarbonyl)-1,2,4a,5,6,7,8,8a-octahydro-2-methyl-6,8-naphthalenecarbolactone (22) using reduction and Barton deoxygenation. Comparison of 21 with 30 and 31 confirmed the structural assignments and showed that the nonenzymatic 4 + 2 cyclizations of 5, 18, and 20 proceed via chairlike exo and endo transition states with the methyl substituent pseudoequatorial. The proposed biosynthetic Diels-Alder leading to lovastatin (1) would require an endo conformation with the methyl substituent pseudoaxial. Intact incorporation of the labeled hexaketide triene 5a into 1 was not achieved because of rapid degradation by A. terreus cells.  相似文献   

14.
First to fourth generation dendritic substituents based on 2,2-bis(hydroxymethyl)propionic acid and (1R,2S,5R)-menthoxyacetic acid were attached to 2-(hydroxymethyl)pyridinooxazoline and bis[4-(hydroxymethyl)oxazoline] compounds. The new ligands obtained were assessed in palladium-catalyzed allylic alkylations. The first type of ligands exhibited enantioselectivity similar to that of a benzoyl ester derivative, whereas the latter type of ligands afforded products with higher selectivity than the analogous benzoyl ester. The activity of the dendritic catalysts decreased with increasing generation.  相似文献   

15.
A new, enantioselective synthesis of the influenza neuraminidase inhibitor prodrug oseltamivir phosphate 1 (Tamiflu) and its enantiomer ent-1 starting from cheap, commercially available 2,6-dimethoxyphenol 10 is described. The main features of this approach comprise the cis-hydrogenation of 5-(1-ethyl-propoxy)-4,6-dimethoxy-isophthalic acid diethyl ester (6a) and the desymmetrization of the resultant all-cis meso-diesters 7a and 7b, respectively. Enzymatic hydrolysis of the meso-diester 7b with pig liver esterase afforded the (S)-monoacid 8b, which was converted into cyclohexenol 17 via a Curtius degradation and a base-catalyzed decarboxylative elimination of the Boc-protected oxazolidinone 14. Introduction of the second amino function via S(N)2 substitution of the corresponding triflate 18 with NaN3 followed by azide reduction, N-acetylation, and Boc-deprotection gave oseltamivir phosphate 1 in a total of 10 steps and an overall yield of approximately 30%. The enantiomer ent-1 was similarly obtained via an enzymatic desymmetrization of meso-diester 7a with Aspergillus oryzae lipase, providing the (R)-monoacid ent-8a.  相似文献   

16.
A synthesis of differentially protected (R)- and (S)-2-methylcysteines is described. Monomethylation of dimethylmalonate followed by alkylation with tert-butylchloromethyl sulfide gave an achiral diester. Desymmeterization by selective hydrolysis of one ester with pig-liver esterase gave the acid in 97% chemical yield and 91% enantiomeric excess. Heating this acid with diphenylphosphoryl azide followed by 4-methoxybenzyl alcohol gave protected (R)-2-methylcysteine. Alternately, the acid and ester groups were interchanged and heated with diphenylphosphoryl azide followed by 4-methoxybenzyl alcohol, giving protected (S)-2-methylcysteine.  相似文献   

17.
The hydrolysis reactions of several title esters in water at 60 degrees C follow the rate law k(obs) = (k(a) + k(b)[OH(-)])/(1 + a(H)/K(a)), where K(a) is the ionization constant of the hydroxy group of the ester and k(b) is the second-order rate constant for the S(N)2(S) attack of hydroxide ion on the ionized ester. Hammett and Br?nsted correlations are consistent with a previous proposal that the mechanism related to k(a) is dissociative. An unusual relationship between k(a) values and redox equilibrium constants for substituted quinones is found to hold: this finding further supports the dissociative nature of the pathway related to k(a).  相似文献   

18.
The synthesis of (2R)-2-methyl-4,5-dideoxy and (2R)-2-methyl-4-deoxy analogues of 6-phosphogluconate is described. The synthetic strategy relies on the Evans aldol reaction for the installation of the chiral centres in the 2- and 3-positions. The selective phosphorylation at the primary alcohol function of (2R,3S)-3,6-dihydroxy-2-methylhexanoic acid benzyl ester (5) and (2R,3S,5S)-3,5,6-trihydroxy-2-methylhexanoic acid benzyl ester (20) was achieved with dibenzyl phosphochloridate and dibenzyl phosphoiodinate respectively, working at low temperature. (2R,3S)-3-Hydroxy-2-methyl-6-phosphonoxyhexanoic acid (9) was obtained in 25% overall yield from 4-benzyloxybutanol and (2R,3S,5S)-3,5-dihydroxy-2-methyl-6-phosphonoxyhexanoic acid (28) in 10% overall yield from L-malic acid.  相似文献   

19.
战宏梅  胡昱  廖建  朱槿  邓金根 《合成化学》2007,15(5):588-590
以光学纯的(1S,5S)-5-叔丁氧羰基氨基-3-环己烯基甲酸为原料,经立体选择性地碘代内酯化、脱碘、醇解、水解、酯化5步反应首次合成了两个光学纯的γ-氨基酸衍生物——(1R,3S,5R)-5-羟基-3-叔丁氧羰基氨基环己基甲酸甲酯(总收率36.7%)和(1R,3S,5R)-5-羟基-3-叔丁氧羰基氨基环己基甲酸苄酯(总收率35.2%),其结构经1H NMR,13C NMR,IR和ESI-HR-MS确证。  相似文献   

20.
Conjugate addition of lithium dibenzylamide to tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate occurs with high levels of stereocontrol, with preferential addition of lithium dibenzylamide to the face of the cyclic alpha,beta-unsaturated acceptor anti- to the 3-methyl substituent. High levels of enantiorecognition are observed between tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate and an excess of lithium (+/-)-N-benzyl-N-alpha-methylbenzylamide (10 eq.) (E > 140) in their mutual kinetic resolution, while the kinetic resolution of tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate with lithium (S)-N-benzyl-N-alpha-methylbenzylamide proceeds to give, at 51% conversion, tert-butyl (1R,2S,3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate consistent with E > 130, and in 39% yield and 99 +/- 0.5% de after purification. Subsequent deprotection by hydrogenolysis and ester hydrolysis gives (1R,2S,3R)-3-methylcispentacin in > 98% de and 98 +/- 1% ee. Selective epimerisation of tert-butyl (1R,2S,3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate by treatment with KO'Bu in 'BuOH gives tert-butyl (1S,2S,3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate in quantitative yield and in > 98% de, with subsequent deprotection by hydrogenolysis and ester hydrolysis giving (1S,2S,3R)-3-methyltranspentacin hydrochloride in > 98% de and 97 +/- 1% ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号