首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we prove a quantitative form of Landis’ conjecture in the plane. Precisely, let W(z) be a measurable real vector-valued function and V(z) ≥0 be a real measurable scalar function, satisfying ‖W L (R 2) ≤ 1 and ‖V L (R 2) ≤ 1. Let u be a real solution of Δu ? ?(Wu) ? Vu = 0 in R 2. Assume that u(0) = 1 and |u(z)| ≤exp (C 0|z|). Then u satisfies inf |z 0| =R  sup |z?z 0| <1|u(z)| ≥exp (?CRlog R), where C depends on C 0. In addition to the case of the whole plane, we also establish a quantitative form of Landis’ conjecture defined in an exterior domain.  相似文献   

2.
We consider the Navier–Stokes equations for the motion of a compressible, viscous, pressureless fluid in the domain W = \mathbbR3+{\Omega = \mathbb{R}^3_+} with the no-slip boundary conditions. We construct a global in time, regular weak solution, provided that initial density ρ 0 is bounded and the magnitude of the initial velocity u 0 is suitably restricted in the norm ||?{r0(·)}u0(·)||L2(W) + ||?u0(·)||L2(W){\|\sqrt{\rho_0(\cdot)}{\bf u}_0(\cdot)\|_{L^2(\Omega)} + \|\nabla{\bf u}_0(\cdot)\|_{L^2(\Omega)}}.  相似文献   

3.
We consider the asymptotic behavior of the solutions ofscaled convection-diffusion equations ∂ t u ɛ (t, x) = κΔ x (t, x) + 1/ɛV(t2,xɛ) ·∇ x u ɛ (t, x) with the initial condition u ɛ(0,x) = u 0(x) as the parameter ɛ↓ 0. Under the assumptions that κ > 0 and V(t, x), (t, x) ∈R d is a d-dimensional,stationary, zero mean, incompressible, Gaussian random field, Markovian and mixing in t we show that the laws of u ɛ(t,·), t≥ 0 in an appropriate functional space converge weakly, as ɛ↓ 0, to a δ-type measureconcentrated on a solution of a certain constant coefficient heat equation. Received: 23 March 2000 / Revised version: 5 March 2001 / Published online: 9 October 2001  相似文献   

4.
The existence of positive radial solutions of the equation -din( |Du|p-2Du)=f(u) is studied in annular domains in Rn,n≥2. It is proved that if f(0)≥0, f is somewherenegative in (0,∞), limu→0^ f‘ (u)=0 and limu→∞ (f(u)/u^p-1)=∞, then there is alarge positive radial solution on all annuli. If f(0)≤0 and satisfies certain conditions, then the equation has no radial solution if the annuli are too wide.  相似文献   

5.
In this paper we study the existence of periodic solutions of the fourth-order equations uivpu″ − a(x)u + b(x)u3 = 0 and uivpu″ + a(x)ub(x)u3 = 0, where p is a positive constant, and a(x) and b(x) are continuous positive 2L-periodic functions. The boundary value problems (P1) and (P2) for these equations are considered respectively with the boundary conditions u(0) = u(L) = u″(0) = u″(L) = 0. Existence of nontrivial solutions for (P1) is proved using a minimization theorem and a multiplicity result using Clark's theorem. Existence of nontrivial solutions for (P2) is proved using the symmetric mountain-pass theorem. We study also the homoclinic solutions for the fourth-order equation uiv + pu″ + a(x)ub(x)u2c(x)u3 = 0, where p is a constant, and a(x), b(x), and c(x) are periodic functions. The mountain-pass theorem of Brezis and Nirenberg and concentration-compactness arguments are used.  相似文献   

6.
In this paper we consider the Cauchy problem for the equation ∂u/∂t + uu/∂x + u/x = 0 for x > 0, t ⩾ 0, with u(x, 0) = u0(x) for x < x0, u(x, 0) = u0+(x) for x > x0, u0(x0) > u0+(x0). Following the ideas of Majda, 1984 and Lax, 1973, we construct, for smooth u0 and u0+, a global shock front weak solution u(x, t) = u(x, t) for x < ϕ(t), u(x, t) = u+(x, t) for x > ϕ(t), where u and u+ are the strong solutions corresponding (respectively) to u0 and u0+ and the curve t → ϕ(t) is defined by dϕ/dt (t) = 1/2[u(ϕ(t), t) + u+(ϕ(t), t)], t ⩾ 0 and ϕ(0) = x0. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

7.
We construct a parametric family {E (±)(s,t,u)} of minimal Q-curves of degree 5 over the quadratic fields Q , and the family {C(s,t,u)} of genus two curves over Q covering E {(+)(s,t,u) whose jacobians are abelian surfaces of GL2-type. We also discuss the modularity for them and the sign change between E {(+)(s,t,u) and its twist E (−)(s,t,u), which correspond by modularity to cusp forms of trivial and non-trivial Neben type characters, respectively. We find in {C(s,t,u)} concrete equations of curves over Q whose jacobians are isogenous over cyclic quartic fields to Shimura's abelian surfaces A f attached to cusp forms of Neben type character of level N= 29, 229, 349, 461, and 509. Received: 23 September 1997 / Revised version: 26 May 1998  相似文献   

8.
We consider the nonlinear Sturm–Liouville problem
(1)
where λ > 0 is an eigenvalue parameter. To understand well the global behavior of the bifurcation branch in R + × L 2(I), we establish the precise asymptotic formula for λ(α), which is associated with eigenfunction u α with ‖ u α2 = α, as α → ∞. It is shown that if for some constant p > 1 the function h(u) ≔ f(u)/u p satisfies adequate assumptions, including a slow growth at ∞, then λ(α) ∼ α p−1 h(α) as α → ∞ and the second term of λ(α) as α → ∞ is determined by lim u → ∞ uh′(u). Mathematics Subject Classification (2000) 34B15  相似文献   

9.
In this paper, we consider the Cauchy problem: (ECP) ut−Δu+p(x)u=u(x,t)∫u2(y,t)/∣x−y∣dy; x∈ℝ3, t>0, u(x, 0)=u0(x)⩾0 x∈ℝ3, (0.2) The stationary problem for (ECP) is the famous Choquard–Pekar problem, and it has a unique positive solution ū(x) as long as p(x) is radial, continuous in ℝ3, p(x)⩾ā>0, and limx∣→∞p(x)=p¯>0. In this paper, we prove that if the initial data 0⩽u0(x)⩽(≢)ū(x), then the corresponding solution u(x, t) exists globally and it tends to the zero steady-state solution as t→∞, if u0(x)⩾(≢)ū(x), then the solution u(x,t) blows up in finite time. © 1997 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

10.
Let k(y) > 0, 𝓁(y) > 0 for y > 0, k(0) = 𝓁(0) = 0 and limy → 0k(y)/𝓁(y) exists; then the equation L(u) ≔ k(y)uxx – ∂y(𝓁(y)uy) + a(x, y)ux = f(x, y, u) is strictly hyperbolic for y > 0 and its order degenerates on the line y = 0. Consider the boundary value problem Lu = f(x, y, u) in G, u|AC = 0, where G is a simply connected domain in ℝ2 with piecewise smooth boundary ∂G = ABACBC; AB = {(x, 0) : 0 ≤ x ≤ 1}, AC : x = F(y) = ∫y0(k(t)/𝓁(t))1/2dt and BC : x = 1 – F(y) are characteristic curves. Existence of generalized solution is obtained by a finite element method, provided f(x, y, u) satisfies Carathéodory condition and |f(x, y, u)| ≤ Q(x, y) + b|u| with QL2(G), b = const > 0. It is shown also that each generalized solution is a strong solution, and that fact is used to prove uniqueness under the additional assumption |f(x, y, u1) – f(x, y, u2| ≤ C|u1u2|, where C = const > 0.  相似文献   

11.
Let P be the Petersen graph, and K u(h) the complete multipartite graph with u parts of size h. A decomposition of K u(h) into edge-disjoint copies of the Petersen graph P is called a P-decomposition of K u(h) or a P-group divisible design of type h u . In this paper, we show that there exists a P-decomposition of K u(h) if and only if h2u(u-1) o 0 mod 30{h^2u(u-1)\equiv 0 \pmod {30}} , h(u-1) o 0 mod 3{h(u-1)\equiv 0\pmod 3} , and u ≥ 3 with a definite exception (h, u) = (1, 10).  相似文献   

12.
We consider an inverse boundary value problem for the heat equation ? t u = div (γ? x u) in (0, T) × Ω, u = f on (0, T) × ?Ω, u| t=0 = u 0, in a bounded domain Ω ? ? n , n ≥ 2, where the heat conductivity γ(t, x) is piecewise constant and the surface of discontinuity depends on time: γ(t, x) = k 2 (x ∈ D(t)), γ(t, x) = 1 (x ∈ Ω?D(t)). Fix a direction e* ∈ 𝕊 n?1 arbitrarily. Assuming that ?D(t) is strictly convex for 0 ≤ t ≤ T, we show that k and sup {ex; x ∈ D(t)} (0 ≤ t ≤ T), in particular D(t) itself, are determined from the Dirichlet-to-Neumann map : f → ?ν u(t, x)|(0, T)×?Ω. The knowledge of the initial data u 0 is not used in the proof. If we know min0≤tT (sup xD(t) x·e*), we have the same conclusion from the local Dirichlet-to-Neumann map. Numerical examples of stationary and moving circles inside the unit disk are shown. The results have applications to nondestructive testing. Consider a physical body consisting of homogeneous material with constant heat conductivity except for a moving inclusion with different conductivity. Then the location and shape of the inclusion can be monitored from temperature and heat flux measurements performed at the boundary of the body. Such a situation appears for example in blast furnaces used in ironmaking.  相似文献   

13.
Basic facts for Gabor frame {Eu(m)bTu(n)ag}m,n∈p on local field are investigated. Accurately, that the canonical dual of frame {Eu(m)bTu(n)ag}m,n∈p also has the Gabor structure is showed; that the product ab decides whether it is possible for {Eu(m)bTu(n)ag}m,n∈p to be a frame for L2(K) is discussed; some necessary conditions and two sufficient conditions of Gabor frame for L2(K) are established. An example is finally given.  相似文献   

14.
We study the boundary-value perlodic problem u tt u xx =F(x, t), u(0, t)=u(π, t)=0, u(x, t+T)=u(x, t), (x, t) ∈ R 2. By using the Vejvoda-Shtedry operator, we determine a solution of this problem. Ternopol Pedagogical Institute, Temopol. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 7, pp. 998–1001, July, 1997.  相似文献   

15.

We suppose that M is a closed subspace of l (J, X), the space of all bounded sequences {x(n)} n?J ? X, where J ? {Z+,Z} and X is a complex Banach space. We define the M-spectrum σM (u) of a sequence u ? l (J,X). Certain conditions will be supposed on both M and σM (u) to insure the existence of u ? M. We prove that if u is ergodic, such that σM (u,) is at most countable and, for every λ ? σM (u), the sequence e?iλnu(n) is ergodic, then u ? M. We apply this result to the operator difference equationu(n + 1) = Au(n) + ψ(n), n ? J,and to the infinite order difference equation Σ r k=1 ak (u(n + k) ? u(n)) + Σ s ? Z?(n ? s)u(s) = h(n), n?J, where ψ?l (Z,X) such that ψ| J ? M, A is the generator of a C 0-semigroup of linear bounded operators {T(t)} t>0 on X, h ? M, ? ? l 1(Z) and ak ?C. Certain conditions will be imposed to guarantee the existence of solutions in the class M.  相似文献   

16.
17.
Let Γ be a non-singular real-analytic hypersurface in some domainU ⊂ ℝ n and let Har0(U, Γ) denote the linear space of harmonic functions inU that vanish on Γ. We seek a condition onx 0,x 1U/Γ such that the reflection law (RL)u(x 0)+Ku(x 1)=0, ∀u∈Har0(U, Γ) holds for some constantK. This is equivalent to the class Har0 (U, Γ) not separating the pointsx 0,x 1. We find that in odd-dimensional spaces (RL)never holds unless Γ is a sphere or a hyperplane, in which case there is a well known reflection generalizing the celebrated Schwarz reflection principle in two variables. In even-dimensional spaces the situation is different. We find a necessary and sufficient condition (denoted the SSR—strong Study reflection—condition), which we described both analytically and geometrically, for (RL) to hold. This extends and complements previous work by e.g. P.R. Garabedian, H. Lewy, D. Khavinson and H. S. Shapiro.  相似文献   

18.
We study Lp decay estimates of the solution to the Cauchy problem for the dissipative wave equation in even dimensions: (□+?t)u=0 in ?N × (0,∞) for even N=2n?2 with initial data (u,?tu)∣t=0 =(u0,u1). The representation formulas of the solution u(t)=?tS(t)u0 + S(t)(u0+u1) provide the sharp estimates on Lp norms with p?1. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Let t = (t1,…,tn) be a point of ?n. We shall write . We put, by the definition, Wα(u, m) = (m?2u)(α ? n)/4(n ? 2)/22(α + n ? 2)/2Г(α/2)]J(α ? n)/2(m2u)1/2; here α is a complex parameter, m a real nonnegative number, and n the dimension of the space. Wα(u, m), which is an ordinary function if Re α ≥ n, is an entire distributional function of α. First we evaluate {□ + m2}Wα + 2(u, m) = Wα(u, m), where {□ + m2} is the ultrahyperbolic operator. Then we express Wα(u, m) as a linear combination of Rα(u) of differntial orders; Rα(u) is Marcel Riesz's ultrahyperbolic kernel. We also obtain the following results: W?2k(u, m) = {□ + m2}kδ, k = 0, 1,…; W0(u, m) = δ; and {□ + m2}kW2k(u, m) = δ. Finally we prove that Wα(u, m = 0) = Rα(u). Several of these results, in the particular case µ = 1, were proved earlier by a completely different method.  相似文献   

20.
Consider the Cauchy problem in odd dimensions for the dissipative wave equation: (□+∂t)u=0 in with (u,∂tu)|t=0=(u0,u1). Because the L2 estimates and the L estimates of the solution u(t) are well known, in this paper we pay attention to the Lp estimates with 1p<2 (in particular, p=1) of the solution u(t) for t0. In order to derive Lp estimates we first give the representation formulas of the solution u(t)=∂tS(t)u0+S(t)(u0+u1) and then we directly estimate the exact solution S(t)g and its derivative ∂tS(t)g of the dissipative wave equation with the initial data (u0,u1)=(0,g). In particular, when p=1 and n1, we get the L1 estimate: u(t)L1Cet/4(u0Wn,1+u1Wn−1,1)+C(u0L1+u1L1) for t0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号