首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the reaction mixtures in the uncatalyzed polybromination of [2.2]paracyclophane by the action of excess Br2 in CCl4, there have been found along with the known products — 4,15- and 4,16-dibromo[2.2]paracyclophanes — two new aromatic tribromides of this series, which have been isolated in pure form: 4,12,15- and 4,15,16-tribromo[2.2]paracyclophanes. Special experiments demonstrated that the mixtures of these tribromides are formed as a result of competitive monobromination of 4,15-dibromo[2.2]paracyclophane; the 4,15,16-tribromo[2.2]paracyclophane, together with still another newly isolated isomer of this series — 4,8,12-tribromo[2.2]paracyclophane — is formed as a result of competitive monobromination of 4,16-dibromo[2.2]paracyclophane. As an explanation of the features of the orienting effect of substituents in these competing reactions, a rule was proposed: On the conventional orientation (from the electronic point of view) of entry of the bromine atom into the substituted ring (para > ortho > meta), a steric limitation is imposed on its attack in the pseudo-gem-position, owing to the bulky bromine atom that is transannularly positioned above it in the neighboring aromatic ring. The structures of all of the tribromides were established on the basis of elemental analyses, mass spectrometry, and1H NMR spectrometry (including PMR using the homonuclear Overhauser effect). The data obtained in this work indicate that the 4,12,15-tribromo[2.2]paracyclophane and 4,15,16-tribromo[2.2]paracyclophane are predecessors of the two tetrabromides previously obtained by Cram — 4,7,12,15- and 4,5,15,16-tetrabromo[2.2]paracyclophanes; and the 4,8,12-tribromo[2.2]paracyclophane is a possible predecessor of 4,8,12,16-tetrabromo[2.2]paracyclophane, which is unknown up to the present time.A. N. Nesmeyanov Institute of Heteroorganic Compounds, Russian Academy of Sciences, 117813 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 8, pp. 1837–1843, August, 1992.  相似文献   

2.
The complexation reactions of monoaryl- and diaryl-substituted [2.2]paracyclophanes with (NH3)3Cr(CO)3 have been studied. The aromatic rings of [2.2]paracyclophane are more favorable for coordination than aryl substituents. This leads to the regioselective formation of the corresponding mono- or binuclear tricarbonylchromium complexes. In some cases, the tricarbonylchromium group is coordinated to the aryl ring of the substituent to form (in low yields) the corresponding mononuclear complex or binuclear complexes with both the aromatic ring of paracyclophane and the aryl ring of the substituent involved in coordination. The structure of such complex, namely, [4-(η6-2,4,6-trimethylpheny)-11-16-η6-[2,2]paracyclophane]bis[tricarbonylchromium(0)] was confirmed by X-ray diffraction study. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 142–150, January, 1998.  相似文献   

3.
An efficient three-step synthesis of [2.2]paracyclophane-pseudo-ortho-dicarboxylic acid by dibromination of [2.2]paracyclophane, thermal isomerization of the resultingpseudopara-dibromide topseudo-ortho-isomer, followed by lithiation/carboxylation was developed. The possibility of preparation of two other novelpseudo-ortho-disubstituted carbonyl derivatives, 4-carboxy-12-(1-oxopenthyl)-[2.2]paracyclophane and di(4-carboxy[2.2]paracyclophanyl-12)ketone, was demonstrated when an excess of lithiation reagent (4 or 10 eq.) was used in the final step. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2001–2004, November, 1997.  相似文献   

4.
4,16-Dibromo[2.2]paracyclophane (4) is isomerised to 4,12-dibromo[2.2]paracyclophane (1) by the application of microwaves in DMF solution.  相似文献   

5.
A comparative molecular orbital study of [2.2]paracyclophane and simple arenes as ligands toward a Cr(CO)3 group was performed with the aim of accounting for the observed coordination patterns. While the inter-ring repulsion is an important factor in [2.2]paracyclophane activation, it is not the only one. The molecular orbitals of two arene rings stacked parallel to each other were analyzed in some detail. The inward hybridization (toward the other ring) of the (arene)2 HOMO was shown to reduce the strength of consequent bonding with the Cr(CO)3 is fragment. The overall stabilization of [2.2]paracyclophane complex with Cr(CO)3 is enhanced by a reduction of the inter-ring repulsion and strengthening of the Ar−Cr bond, and reduced by weakening of the intra-ring carbon-carbon bonds. The inter-ring repulsion increases with approach of the arenes to each other, as appears to happen in the structure of [2.2]paracyclophane complex with Cr(CO)3. This explains the high donor ability of the free ring of the (arene)2Cr(CO)3 complex toward another Cr(CO)3 fragment. It was proposed that the stabilization of the [2.2]paracyclophane complex with Cr(CO)3 results ultimately from the relaxation of the strained framework of [2.2]paracyclophane. The kinetic factor in Cr(CO)3 complexation was also studied by analyzing the charges on competing arene rings in monoaryl-substituted derivatives of [2.2]paracyclophanes. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 151–157, January, 1998.  相似文献   

6.
Allylboronic esters with various structures were synthesized for the first time based on [2.2]paracyclophane derivatives containing one or two hydroxy groups. It was demonstrated that these esters can be used as chiral inductors in the asymmetric allylboration of benzaldehyde. The highest enantiomeric excess of 1-phenylbut-3-en-1-ol (60%) was achieved in the reactions with acyclic bis-O,O′-(paracyclophanyl) allylboronates based on (S)-4-hydroxy-and (S)-12-bromo-4-hydroxy[2.2]paracyclophanes. (S)-4-Hydroxy[2.2]paracyclophane was studied by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2149–2155, November, 2007.  相似文献   

7.
The synthesis of a variety of new 4,5-disubstituted [2.2]paracyclophane derivatives has been achieved employing different cross-coupling reactions. By this methodology, a heteroatom-variation of successful catalyst ligands was achieved, giving rise to a modular ligand system. The X-ray structure of 4-hydroxy-5-(1′-hydroxy-1′-phenylethyl)-[2.2]paracyclophane was determined to elucidate the configuration. Additionally, a diastereoselective synthesis of planar- and central-chiral 4-([2.2]paracyclophanyl)ethylamine was achieved, thus resulting in a planar- and central-chiral phenyl ethylamine analogue.  相似文献   

8.
The character of distortions of the paracyclophane skeleton in various substituted [2.2]paracyclophanes was analyzed based on X ray diffraction data. The rigidity of the skeleton is provided by ethylene bridges and flexibility of the benzene rings, which adopt a boat conformation. The flexibility of the skeleton is manifested in the displacement of the benzene rings with respect to each other and conformational changes of ethylene bridges. The changes in these characteristics are very sensitive to intra- and intermolecular steric factors and are indicative of the absence of strong specific stacking interactions between the be nzene rings. Precision X-ray diffraction study and quantum-chemical calculations for unsubstituted [2.2]paracyclophane and 4,7-benzoquinono[2.2]paracyclophane demonstrated that there are no attractive interactions between the benzene rings, and the electron density is localized predominantly on the outer surface of the rings. This fact can be considered as the cage molecular effect of the [2.2]paracyclophane skeleton.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1707–1732, September, 2004.  相似文献   

9.
Stereoselectivity of allylboration of 4-formyl[2.2]paracyclophane, 4-acetyl[2.2]paracyclophane, and 4-hydroxy-5-formyl[2.2]paracyclophane was studied and the relative configurations of the homoallylic alcohols obtained were established. Optically pure (Sp,Sc)-(+)-4-(4-hydroxy-1-methylbut-3-enyl)[2.2]paracyclophane and (Rc,Sc)-(+)-4-hydroxy-5-(4-hydroxybut-3-enyl)[2.2]paracyclophane were synthesized. The possibility of using (Sp,Sc)-(+)-4-(4-hydroxy-4-methylbut-3-enyl)[2.2]paracyclophane as a recoverable chiral auxiliary in asymmetric allylboration of aldehydes was demonstrated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 914–921, May, 2000.  相似文献   

10.
An exploration into the scope of Suzuki aryl cross-coupling chemistry using derivatives of 1,1,2,2,9,9,10,10-octafluoro[2.2]paracyclophane is reported. The coupling of 4-iodo-1,1,2,2,9,9,10,10-octafluoro[2.2]paracyclophane with various aryl boronic acids and boronic acid pinacol esters was successful, with the exception of very sterically demanding systems, such as mesityl. The synthesis of the previously unreported 1,1,2,2,9,9,10,10-octafluoro[2.2]paracyclophanyl-4-boronic acid is described, together with various Suzuki aryl cross-coupling reactions of this new system. Using standard Suzuki methodology, it was possible to prepare dicyclophanes bearing two octafluoro[2.2]paracyclophane units separated by both one and two benzene rings.  相似文献   

11.
The reaction of 2-benzoylpyridine with 4-([2.2]paracyclophanyl)lithium or of 4-benzoyl[2.2]paracyclophane with 2-pyridyllithium gave α-pyridyl([2.2]paracyclophan-4- yl)phenylmethanol. X-ray analysis has been used to study the molecular and crystalline structure of its complex with Cu(II) chloride. It was found that this triaryl-substituted methanol undergoes an intramolecular cyclocondensation in refluxing formic acid and involves the pyridine ring and the cyclophane substituent. Heterocyclization at the ortho-position of the latter gives 10-phenyl[2.2]paracyclophano[4,5-b]indolizine and cyclization at the pseudo-gem-position the 1-phenyl-1,1a-dehydro-6-aza[3.2.2](1,2,5)-6H-cyclophano[1,2-a]pyridine. The compounds prepared have luminescent properties. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 864–873, June 2005.  相似文献   

12.
Piperonylidinyl‐4‐[2.2]paracyclophanylamine 1 reacted with some electron π‐deficients via charge‐transfer complexation and afforded amino derivatives of [2.2[paracyclophane 2–9 . Transannular electronic interaction existing in a cyclophane molecule plays an essential role for product formation.  相似文献   

13.
An alternative synthesis of (±)-4-ethynyl[2.2]paracyclophane (PCPCCH) (5) and 4,16-diethynyl[2.2]paracyclophane (6) via the Corey-Fuchs reaction has been developed. The olefinic intermediate 4-dibromovinyl[2.2]paracyclophane (3) has been isolated and structurally characterized. The racemic terminal alkyne 5 was employed as starting material for assembling of a luminescent extended π-conjugated system containing a thiophene unit and for a catalytic bis-silylation reaction yielding the olefinic dithioether Z-PhSCH2Me2SiC(H)C(PCP)SiMe2CH2SPh (9). The dimetallatetrahedran [Co2(CO)6(μ-η2-PCP-CCH)] (10) has been prepared and its crystal structure determined by an X-ray diffraction analysis. Alkyne 5 has also been used for the preparation of the Pt(0) complex [Pt(PPh3)2(PCPCCH)] (11) and the heterodinuclear dimetallacyclopentenone [(OC)2Fe{μC(O)C(PCP)C(H)}(μ-dppm)Pt(PPh3)] (12). The synthesis and reactivity of 4-isocyano[2.2]paracyclophane (15) towards heterobimetallic iron-platinum and palladium-platinum complexes is also presented. Opening of the dative iron → platinum bond of [(OC)4Fe(μ-dppm)PtCl2] (16) occurred upon addition of 15 to a CH2Cl2 solution of 16 leading to [(OC)4Fe{μ-dppm}PtCl2(CNPCP)] (17). Treatment of [ClPd(μ-dppm)2PtCl] (18) with isocyanide 15 in a 1:1 ratio affords the A-frame compound [ClPd(μ-dppm)2(μ-CNPCP)PtCl] (19), resulting from formal insertion of 15 into the Pd-Pt bond. Addition of 2 equiv. of 15-18 leads to the ionic A-frame compound [ClPd(μ-dppm)2(μ-CNPCP)Pt(CNPCP)]Cl (20).  相似文献   

14.
New types of planar chiral (Rp)‐ and (Sp)‐4,7,12,15‐tetrasubstituted [2.2]paracyclophanes were synthesized from racemic 4,12‐dihydroxy[2.2]paracyclophane as the starting compound. Regioselective dibromination and transformation afforded a series of planar chiral (Rp)‐ and (Sp)‐4,7,12,15‐tetrasubstituted [2.2]paracyclophanes, which can be used as chiral building blocks. In this study, left‐ and right‐handed double helical structures were constructed via chemoselective Sonogashira–Hagihara coupling. The double helical compounds were excellent circularly polarized luminescence (CPL) emitters with large molar extinction coefficients, good photoluminescence quantum efficiencies, and large CPL dissymmetry factors.  相似文献   

15.
Charges on carbon atoms in the molecules of 4-aryl-substituted [2.2]paracyclophanes were estimated and the role of charge control as a kinetic factor in regioselectivity of their complexation with (NH3)3Cr(CO)3 was investigated using electron density distribution analysis by the Bader, Weinhold-Reed (NPA), and Mulliken methods. The most plausible picture of the electron density distribution in substituted [2.2]paracyclophanes was obtained by the Bader method and compared with experimental data on the yields of reaction products. Topological analysis of the electron density distribution in the [2.2]paracyclophane molecule by the Bader method confirmed the existence of a weak antibonding interaction between the stacked benzene rings. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 441–444, March, 1999.  相似文献   

16.
A simple and novel approach for synthesizing the benzene ring-layered polymers using [2.2]paracyclophane and xanthene skeletons was demonstrated. Palladium-catalyzed polymerization of pseudo-p-diethynyl[2.2]paracyclophane 1, 2,7-di-tert-butyl-4,5-diiodo-9,9-dimethylxanthene 2, and ethynylferrocene 3 gave the corresponding polymers 4a-c, which composed of 7-30 face-to-face benzene rings by changing the feed ratio of 1-3.  相似文献   

17.
Ultraviolet spectra of 4-phenyl-[2.2]paracyclophane and of the 4,7- and 4,13-diphenyl derivatives were interpreted. MINDO/3 total molecular energy andPPP—CI-1 energies of singlet transitions were calculated for different values of the dihedral angle of the phenyl ring with respect to the benzene ring of paracyclophane. Although most of the theoretical transitions correspond to local excitation within thePCP fragment, some of them result in a transfer of electron charge to the phenyl substituents.
Elektronenspektren und Konformationen von Mono- und Diphenylderivaten des [2.2]Paracyclophans
Zusammenfassung Es werden die UV-Spektren von 4-Phenyl-[2.2]paracyclophan, 4,7- und 4,13-Diphenyl-[2.2]paracyclophan interpretiert. Für verschiedene Diederwinkel der Phenylringe relativ zu dem Benzolring des Paracyclophans wurden MINDO/3-Rechnungen für die Gesamtenergie undPPP—CI-1 Rechnungen für die Singlet-Übergänge durchgeführt. Die meisten der berechneten Übergänge gehören zu lokalen Anregungen innerhalb desPCP-Fragments, einige sind jedoch einem Elektronentransfer zu den Phenylsubstituenten zuzuschreiben.
  相似文献   

18.
Selective activation/functionalization of C−H bonds has emerged as an atom- and step-economical process at the forefront of modern synthetic chemistry. This work reports palladium-catalyzed exclusively para-selective C−H activation/aryl–aryl bond formation with a preference over N-arylation under the Buchwald–Hartwig amination reaction of 4-phenylamino[2.2]paracyclophane. This innovative synthetic strategy allows a facile preparation of [2.2]paracyclophane derivatives featuring disparate para-substitutions at C-4 and C-7 positions in a highly selective manner, gives access to a series of potential candidates for [2.2]paracyclophane-derived new planar chiral ligands. The unprecedented behavior in reactivity and preferential selectivity of C−C coupling over C−N bond formation via C−H activation is unique to the [2.2]paracyclophane scaffold compared to the non-cyclophane analogue under the same reaction conditions. Selective C−H activation/aryl–aryl bond formation and sequential C−N coupling product formation is evidenced unambiguously by X-ray crystallography.  相似文献   

19.
A new [2.2]paracyclophane compound consisting of two 1,3,5-tris[(2,5-dimethylphenyl)ethynyl]benzenes stacked in proximity to each other. The compound exhibited a unique absorption band (cyclophane band) and an emission from the phane state, both of which were derived from the π-π stacking of the poorly extended conjugation systems of 1,3,5-tris[(2,5-dimethylphenyl)ethynyl]benzene. In addition, a conjugated microporous polymer (CMP) that comprises pseudo-para-substituted [2.2]paracyclophane was prepared. The obtained CMP is regarded as a polymer, in which 1,3,5-tris[(2,5-dimethylphenyl)ethynyl]benzenes are infinitely stacked to form a network structure. The CMP exhibited a type I nitrogen gas sorption profile and an H4-like hysteresis loop, and possessed the slit-like mesopores with a BET surface area of 501 m2 g−1.  相似文献   

20.
For a better insight into the spectroscopic properties of [2.2]paracyclophane in fluorescent probes, a novel rhodamine-based chemodosimeter bearing [2.2]paracyclophane 4a has been designed and synthesized. The probe 4a exhibits a highly selective and sensitive response to Hg2+ over other transition metal ions in aqueous solution. Its detection limit is determined to be 77 nM. The significant changes in the fluorescence color could be used for the naked-eye detection. Furthermore, the probe 4a shows good membrane permeability and can be applied to detect intracellular Hg2+ in human lung adenocarcinoma cells (A549 cells). The crystal structure and spectral properties of its congener 4b that contains one 12-bromo [2.2]paracyclophane group and rhodamine moiety are also investigated for a comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号