首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
TADDOL (alpha,alpha,alpha',alpha'-Tetraaryl-2,2-dimethyl-1,3-dioxolane-4,5-dimethanol) and its derivatives have been used as a chiral auxiliary in a huge number of enantioselective syntheses mediated by transition metals. Herein we report for the first time on the synthesis and structural characterization of Zn-TADDOLate complexes. The homo trinuclear zinc complex, [Me2Zn3{(S,S)-TADDOLate}2(THF)2], was obtained by reaction of TADDOL with dimethylzinc, whereas the hetero trinuclear complex, [Li2Zn{(S,S)-TADDOLate}2(THF)2], was synthesized from dilithium TADDOLate with zinc dichloride. Both structures reveal a non-linear trimetallic M...Zn...M setup, which is surrounded by two TADDOLate ligands.  相似文献   

2.
Weak molecular and magnetic exchange interactions in ternary copper(II) complexes, viz., [Cu(L-phe)(phen)(H(2)O)]ClO(4) (1), [Cu(L-phe)(bpy)(H(2)O)]ClO(4) (2), and [Cu(L-his)(bpy)]ClO(4).1.5H(2)O (3), where L-phe = L-phenylalanine, L-his = L-histidine, phen = 1,10-phenanthroline, and bpy = 2,2'-bipyridine, have been investigated. Single-crystal X-ray structures reveal that complex 2 crystallizes in a monoclinic space group P2(1), with unit cell parameters a = 7.422(7) A, b = 11.397(5) A, c = 12.610(2) A, beta = 102.10(5) degrees, V = 1043.0(11) A(3), Z = 2, R = 0.0574, and R(w) = 0.1657. Complex 3 crystallizes in a monoclinic space group C2, with a = 18.834(6) A, b = 10.563(4) A, c = 11.039(3) A, beta = 115.23(2) degrees, V = 1986.6(11) A(3), Z = 4, R = 0.0466, and R(w) = 0.1211. Molecules of 2, in the solid state, are self-assembled via weak intra- and intermolecular pi-pi stacking and H-bonding interactions. Molecules of 3 exhibit intermolecular dimeric association with the Cu.Cu separation being 3.811 A. X-ray structures and (1)H NMR studies reveal conformational isomerism in both solid and liquid states of complexes 1 and 2. The aromatic side chain of L-phe in 1 and 2 adopts either a "folded" (A) or an "extended" (B) conformation. Variable-temperature (1)H NMR and spin lattice relaxation measurements point out interconversion between conformations A and B at temperatures above 323 K. The change in molecular conformation induces a change in the electron density at the site of copper and band gap energy between HOMO and LUMO orbitals. Interestingly, in spite of paramagnetic nature, complexes 1 and 2 are amenable for both EPR and (1)H NMR spectroscopic studies. Single-crystal EPR spectra of 2 in three orthogonal planes are consistent with three-dimensional magnetic behavior. Intramolecular exchange dominates the dipolar interactions. The EPR spectra of 3 correspond to weak magnetic interactions between associated dimeric units. The structural and magnetic resonance investigations together reveal that the weak pi-pi stacking interactions are the electronic pathways for magnetic interactions in 1-3.  相似文献   

3.
Two novel tridentate dinucleating ligands containing benzimidazole were prepared, 1,3-bis(2-benzimidazolyl)-2-propanol (Hbbp, 1) and 1,5-bis(2-benzimidazolyl)-3-pentanol (Hbbpen, 2). Their complexing properties toward copper were studied in order to obtain structural and functional models for catechol oxidases. Syntheses and crystal structures of dinuclear Cu(II) complexes derived from these ligands are reported. [Cu(2)bbp(2)](ClO(4))(2).2MeOH, 3, crystallizes in the triclinic space group P&onemacr; with the following unit cell parameters: a = 7.702(3) ?, b = 10.973(6) ?, c = 12.396(6) ?, alpha = 100.59(4) degrees, beta = 99.02(4) degrees, gamma = 98.90(4) degrees, V = 998.7(8) ?(3), and Z = 1. [Cu(2)bbpen(2)](ClO(4))(2).3MeOH, 4, crystallizes in the orthorhombic space group Pccn, with the following unit cell parameters: a = 17.478(9) ?, b = 18.795(8) ?, c = 13.888(6) ?, V = 4562.2(4) ?(3), and Z = 4. Magnetic susceptibility measurements in the temperature ranges 4.6-459 K (3) and 4.6-425 K (4) indicate an antiferromagnetic coupling between the Cu(II) centers of both complexes. In order to determine the structures of the complexes in solution, XAS spectra (EXAFS and XANES) were recorded in the solid state and in solution. The interpretation of these data, including multiple scattering calculations, together with UV-vis titrations, shows that the complexes have the same structure in the crystalline state as well as in methanolic solution. Complex 4 is able to oxidize 3,5-di-tert-butylcatechol (3,5-DTBC) to the quinone (catecholase activity). This reaction was also studied by XAS and UV-vis spectroscopy. These measurements reveal the reduction of Cu(II) to Cu(I) accompanied by a decrease of the coordination number.  相似文献   

4.
The coordination chemistry of the solvate complexes of the relatively soft electron-pair acceptor copper(I) has been studied in solution and solid state in seven solvents with strong electron-pair donor properties, liquid ammonia, trimethyl, triethyl, triisopropyl, tri-n-butyl and triphenyl phosphite, and tri-n-butylphosphine. The solvate complexes have been characterised by means of EXAFS and 63Cu NMR spectroscopy, and in some cases also by 65Cu NMR spectroscopy. The copper(I) ion is three-coordinated, most probably in a coplanar trigonal fashion, in liquid ammonia with a mean Cu-N bond distance of 2.00(1) Angstroms. No 63Cu NMR signal has been detected from the ammonia solvated copper(I) ion in liquid ammonia, which supports a three-coordination. The phosphite and phosphine solvated copper(I) ions are tetrahedral with Cu-P bond distances in the range 2.24-2.28 Angstrom in both solution and solid state as determined by EXAFS spectroscopy. The tetrahedral configuration of these complexes has been confirmed by 63Cu and 65Cu NMR spectroscopy through the J(63Cu-31P) and J(65Cu-31P) couplings. The fact that two of the investigated complexes, [Cu(P(OC6H5)3)4]+ and [Cu(P(C4H9)3)4]+, are 63Cu and 65Cu NMR silent is probably caused by a significantly angular distorted tetrahedral configuration.  相似文献   

5.
Homoleptic copper(I) and silver(I) complexes [M(n)(L-L)(2)(n)()](BF(4))(n)() (M = Cu or Ag; L-L = MeECH(2)EMe; E = S, Se or Te) have been prepared and characterized by analysis, FAB mass spectrometry, and IR and multinuclear NMR spectroscopy ((1)H, (77)Se, (125)Te, (63)Cu and (109)Ag). The single-crystal X-ray structures of [Cu(n)()(MeSeCH(2)SeMe)(2)(n)()](PF(6))(n)() (orthorhombic, P2(1)2(1)2(1), a = 10.879(7) ?, b = 16.073(7) ?, c = 9.19(1) ?, Z = 4) and [Ag(n)()(MeSeCH(2)SeMe)(2)(n)()](BF(4))(n)() (monoclinic, P2(1)/c, a = 14.546(9) ?, b = 14.65(1) ?, c = 30.203(9) ?, Z = 4) reveal extended three-dimensional cationic frameworks in the solid state which contain large cylindrical or rectangular channels accommodating the PF(6)(-) or BF(4)(-) counterions. In contrast, a single-crystal X-ray structure of [Cu(n)()(MeSCH(2)SMe)(2)(n)()](PF(6))(n)().nMeNO(2) (orthorhombic, Pbcn, a = 15.506(3) ?, b = 8.934(2) ?, c = 25.859(3) ?, Z = 8) shows tetrahedral Cu(I) ions coordinated to bridging dithioethers forming an cationic ribbon-like arrangement of 8-membered rings. Adjacent rings are linked by the Cu atoms. Variable temperature NMR studies have been used to probe various exchange processes occurring in solution in these systems.  相似文献   

6.
Introduction Copper(I) complexes have received much attention for their being less expensive and environmentally friendly, various coordination geometry, rich photo-chemical and photophysical properties.1-7 It is well known that copper complexes with diimine (2,2'-bipy- ridine, 1,10-phenanthroline and their substituted deriva-tives designated as diimine) generally exhibit low en-ergy metal-to-ligand charge-transfer (MLCT) states lo-cated in the regions of 350650 nm (e ≈ 103—104 dm3昺ol-1昪…  相似文献   

7.
The copper(I) and copper(II) complexes with the nitrogen donor ligands bis[(1-methylbenzimidazol-2-yl)methyl]amine (1-BB), bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-BB), N-acetyl-2-BB (AcBB), and tris[2-(1-methylbenzimidazol-2-yl)ethyl]nitromethane (TB) have been studied as models for copper nitrite reductase. The copper(II) complexes form adducts with nitrite and azide that have been isolated and characterized. The Cu(II)-(1-BB) and Cu(II)-AcBB complexes are basically four-coordinated with weak axial interaction by solvent or counterion molecules, whereas the Cu(II)-(2-BB) and Cu(II)-TB complexes prefer to assume five-coordinate structures. A series of solid state structures of Cu(II)-(1-BB) and -(2-BB) complexes have been determined. [Cu(1-BB)(DMSO-O)(2)](ClO(4))(2): triclinic, P&onemacr; (No. 2), a = 9.400(1) ?, b = 10.494(2) ?, c = 16.760(2) ?, alpha = 96.67(1) degrees, beta = 97.10(1) degrees, gamma = 108.45(1) degrees, V = 1534.8(5) ?(3), Z = 2, number of unique data [I >/= 3sigma(I)] = 4438, number of refined parameters = 388, R = 0.058. [Cu(1-BB)(DMSO-O)(2)](BF(4))(2): triclinic, P&onemacr; (No. 2), a = 9.304(5) ?, b = 10.428(4) ?, c = 16.834(8) ?, alpha = 96.85(3) degrees, beta = 97.25(3) degrees, gamma = 108.21(2) degrees, V = 1517(1) ?(3), Z = 2, number of unique data [I >/= 2sigma(I)] = 3388, number of refined parameters = 397, R = 0.075. [Cu(1-BB)(DMSO-O)(NO(2))](ClO(4)): triclinic, P&onemacr; (No. 2), a = 7.533(2) ?, b = 8.936(1) ?, c = 19.168(2) ?, alpha = 97.66(1) degrees, beta = 98.62(1) degrees, gamma = 101.06(1) degrees, V = 1234.4(7) ?(3), Z = 2, number of unique data [I >/= 2sigma(I)] = 3426, number of refined parameters = 325, R = 0.081. [Cu(2-BB)(MeOH)(ClO(4))](ClO(4)): triclinic, P&onemacr; (No. 2), a = 8.493(3) ?, b = 10.846(7) ?, c = 14.484(5) ?, alpha = 93.71(4) degrees, beta = 103.13(3) degrees, gamma = 100.61(4) degrees, V = 1270(1) ?(3), Z = 2, number of unique data [I>/= 2sigma(I)] = 2612, number of refined parameters = 352, R = 0.073. [Cu(2-BB)(N(3))](ClO(4)): monoclinic, P2(1)/n (No. 14), a = 12.024(3) ?, b = 12.588(5) ?, c = 15.408(2) ?, beta = 101,90(2) degrees, V = 2282(1) ?(3), Z = 4, number of unique data [I >/= 2sigma(I)] = 2620, number of refined parameters = 311, R = 0.075. [Cu(2-BB)(NO(2))](ClO(4))(MeCN): triclinic, P&onemacr; (No. 2), a = 7.402(2) ?, b = 12.500(1) ?, c = 14.660(2) ?, alpha = 68.14(1) degrees, beta = 88.02(2) degrees, gamma = 78.61(1) degrees, V = 1233.0(4) ?(3), Z = 2, number of unique data [I>/= 2sigma(I)] = 2088, number of refined parameters = 319, R = 0.070. In all the complexes the 1-BB or 2-BB ligands coordinate the Cu(II) cations through their three donor atoms. The complexes with 2-BB appear to be more flexible than those with 1-BB. The nitrito ligand is bidentate in [Cu(2-BB)(NO(2))](ClO(4))(MeCN) and essentially monodentate in [Cu(1-BB)(DMSO-O)(NO(2))](ClO(4)). The copper(I) complexes exhibit nitrite reductase activity and react rapidly with NO(2)(-) in the presence of stoichiometric amounts of acid to give NO and the corresponding copper(II) complexes. Under the same conditions the reactions between the copper(I) complexes and NO(+) yield the same amount of NO, indicating that protonation and dehydration of bound nitrite are faster than its reduction. The NO evolved from the solution was detected and quantitated as the [Fe(EDTA)(NO)] complex. The order of reactivity of the Cu(I) complexes in the nitrite reduction process is [Cu(2-BB)](+) > [Cu(1-BB)](+) > [Cu(TB)](+) > [Cu(AcBB)](+).  相似文献   

8.
A series of Cu(II) complexes have been synthesized from bidentate Schiff base ligands (by condensation of Knoevenagel condensate of acetoacetanilide (obtained from substituted benzaldehydes and acetoacetanilide) and 2-aminobenzothiazole). They were characterized by elemental analysis, IR, 1H NMR, 13C NMR, UV–vis., molar conductance, magnetic moment, ESR spectra and electrochemical studies. Based on the magnetic moment, ESR, and electronic spectral data, a distorted square planar geometry has been suggested for the complexes. Antibacterial and antifungal screening of the ligands and their complexes reveal that all the complexes show higher activities than the ligands. The antioxidant activities of the ligands and complexes were determined by superoxide and hydroxyl radical scavenging methods in vitro, indicating that the complexes exhibit more effective antioxidant activity than the ligands alone. The results show that the Cu(II) complexes also have similar superoxide dismutase activity to that of native Cu, Zn-SOD. All complexes exhibit suitable Cu(II)/Cu(I) redox potential (E1/2) to act as synthetic antioxidant enzyme mimics.  相似文献   

9.
The preparation, characterization and application of a new stationary phase derived from 1,4-cyclohexanedione and diethyl (+)-tartrate are described. A suitable TADDOL for immobilization has been synthesized and grafted to a γ-mercaptopropylsilylated silica gel. The resulting modified stationary phase has been characterized and its ability to separate enantiomers has been studied. While the free TADDOL in solution was able to resolve a range of enantiomers, the resolving properties were lost on immobilization. Solid state 13C CPMAS NMR of the new stationary phase was used to explain the lack of stereoselective recognition.  相似文献   

10.
A new benzimidazole-based diamide ligand-N,N'-bis(glycine-2- benzimidazolyl)hexanediamide (GBHA)-has been synthesized and utilized to prepare Cu(II) complexes of general composition [Cu(GBHA)X]X, where X is an exogenous anionic ligand (X = Cl(-), NO(3)(-), SCN(-)). The X-ray structure of one of the complexes, [Cu(GBHA)Cl]Cl.H(2)O.CH(3)OH, has been obtained. The compound crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 26.464(3) A, b = 10.2210(8) A, c = 20.444(2) A, alpha = 90 degrees, beta = 106.554(7) degrees, gamma = 90 degrees, V= 5300.7(9) A(3), and Z = 8. To the best of our knowledge, the [Cu(GBHA)Cl]Cl.H(2)O.CH(3)OH complex is the first structurally characterized mononuclear trigonal bipyramidal copper(II) bisbenzimidazole diamide complex having coordinated amide carbonyl oxygen. The coordination geometry around the Cu(II) ion is distorted trigonal bipyramidal (tau = 0.59). Two carbonyl oxygen atoms and a chlorine atom form the equatorial plane, while the two benzimidazole imine nitrogen atoms occupy the axial positions. The geometry of the Cu(II) center in the solid state is not preserved in DMSO solution, changing to square pyramidal, as suggested by the low-temperature EPR data g( parallel) > g( perpendicular) > 2.0023. All the complexes display a quasi-reversible redox wave due to the Cu(II)/Cu(I) reduction process. E(1/2) values shift anodically from Cl(-) < NO(3)(-) < SCN(-), indicating that the bound Cl(-) ion stabilizes the Cu(II) ion while the N-bonded SCN(-) ion destabilizes the Cu(II) state in the complex. When calculated against NHE, the redox potentials turn out to be quite positive as compared to other copper(II) benzimidazole bound complexes (Nakao, Y.; Onoda, M.; Sakurai, T.; Nakahara, A.; Kinoshita, L.; Ooi, S. Inorg. Chim. Acta 1988, 151, 55. Addison, A. W.; Hendricks, H. M. J.; Reedijk, J.; Thompson, L. K. Inorg. Chem. 1981, 20 (1), 103. Sivagnanam, U.; Palaniandavar, M. J. Chem. Soc., Dalton Trans. 1994, 2277. Palaniandavar, M.; Pandiyan, T.; Laxminarayan, M.; Manohar, H. J. Chem. Soc., Dalton Trans. 1995, 457. Sakurai, T.; Oi, H.; Nakahara, A. Inorg. Chim. Acta 1984, 92, 131). It is therefore concluded that binding of amide carbonyl oxygen destabilizes the Cu(II) state. The complex [Cu(II)(GBHA)(NO(3))](NO(3)) could be successfully reduced by the addition of dihydroxybenzenes to the corresponding [Cu(I)(GBHA)](NO(3)). (1)H NMR of the reduced complex shows slightly broadened and shifted (1)H signals. The reduction of the Cu(II) complex presumably occurs with the corresponding 2e(-) oxidation of the quinol to quinone. Such a conversion is reminiscent of the functioning of a copper-containing catechol oxidase from sweet potatoes and the met form of the enzyme tyrosinase.  相似文献   

11.
We have designed and synthesized a new Cu2Gd heterotrinuclear complex, [LCu2Gd(OAc)3] (1), where H4L is a bis(salen)-type tetraoxime ligand useful in the synthesis of discrete (3d)2(4f) complexes. Complex 1 crystallizes in the triclinic system, space group P1, with unit cell parameters a = 12.442(4) A, b = 13.397(3) A, c = 13.966(4) A, alpha = 77.052(8) degrees, beta = 88.656(10) degrees, gamma = 77.761(8) degrees, and Z = 2. In the crystal structure of 1, Cu-Gd distances are 3.3-3.5 A, whereas the two Cu atoms are separated by 6.08 A. The corresponding dinuclear CuGd complexes, 2 and 3, with mono(salen)-type chelate 3-MeOsalamo were also synthesized. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with unit cell parameters a = 13.869(8) A, b = 13.688(7) A, c = 18.728(10) A, beta = 92.861(8) degrees, and Z = 4, and complex 3 crystallizes in the triclinic system, space group P1, with unit cell parameters a = 12.319(4) A, b = 13.989(4) A, c = 16.774(5) A, alpha = 64.699(14) degrees, beta = 66.672(13) degrees, gamma = 76.891(17) degrees, and Z = 4. Interaction between Cu(II) and Gd(III) in the dinuclear complexes 2 and 3 is ferromagnetic (J = 4.5 and 7.6 cm(-1), respectively, using spin Hamiltonian H = -JS(Cu) x S(Gd)) as observed in the previously prepared [LCuGdX3] complexes, where L is a salen-type chelate. Magnetic data for the Cu2Gd trinuclear complex can be reasonably interpreted with the use of a spin Hamiltonian H = -J(CuGd)S(Cu1) x S(Gd) - J(CuGd)S(Cu2) x S(Gd) - J(CuCu)S(Cu1) x S(Cu2) with J(CuGd) = 5.0 cm(-1) and J(CuCu) = 0 cm(-1). The S = 9/2 ground state resulted from the ferromagnetic interaction among the Cu(II)-Gd(III)-Cu(II) triad was also supported by the saturation magnetization at 1.8 K.  相似文献   

12.
The dinuclear copper(II) complexes [Cu(2)(tmihpn)(prz)](ClO(4))(2).2CH(3)CN (6) and [Cu(2)(tmihpn)(O(2)CCH(3))](ClO(4))(2).CH(3)CN (7) were prepared, where tmihpn is the deprotonated form of N,N,N',N'-tetrakis[(1-methylimidazol-2-yl)methyl]-1,3-diaminopropan-2-ol and prz is the pyrazolate anion. The crystal structures of 6 and 7 were determined and revealed that both complexes contain bridging alkoxide ligands as well as bridging pyrazolate and acetate ions, respectively. Crystal data: compound 6, triclinic, P&onemacr;, a = 18.089(2) ?, b = 22.948(3) ?, c = 9.597(2) ?, alpha = 93.37(2) degrees, beta = 94.49(2) degrees, gamma = 81.69(2) degrees, V = 3925.1 ?(3), Z = 4; compound 7, triclinic, P&onemacr;, a = 12.417(2) ?, b = 15.012(3) ?, c = 10.699(2) ?, alpha = 104.76(2) degrees, beta = 102.63(2) degrees, gamma = 99.44(2) degrees, V = 1830.1 ?(3), Z = 2. In compound 6, the coordination geometry around both copper centers resembles a distorted square pyramid, while the stereochemistry around the copper centers in 7 is best described as trigonal bipyramidal. Both complexes display well-resolved isotropically shifted (1)H NMR spectra. Selective substitution studies and integration data have been used to definitively assign several signals to specific ligand protons. Results from the solution (1)H NMR studies suggest that the basal and apical imidazole groups do not exchange rapidly on the NMR time scale and the solid state structures of the complexes are retained in solution. In addition, the magnetochemical characteristics of 6 and 7 were determined and provide evidence for "magnetic orbital switching". Antiferromagnetic coupling in 6 (J = -130 cm(-)(1)) is strong, while the copper centers in compound 7 are ferromagnetically coupled (J = +16.4 cm(-1)). Differences in the magnetic behavior of the two copper centers have been rationalized using the "ligand orbital complementary" concept. The ground state magnetic orbitals involved in spin coupling in 6 (d(x)()()2(-)(y)()()2) are different from those in 7 (d(z)()()2).  相似文献   

13.
A series of Cu(I) complexes with a [Cu(NN)(PP)](+) moiety, [Cu(phen)(pba)](BF(4)) (1a), [Cu(2)(phen)(2)(pbaa)](BF(4))(2) (2a), [Cu(2)(phen)(2)(pnaa)](BF(4))(2) (3a), [Cu(2)(phen)(2)(pbbaa)](BF(4))(2) (4a), [Cu(dmp)(pba)](BF(4)) (1b), [Cu(2)(dmp)(2)(pbaa)](BF(4))(2) (2b), [Cu(2)(dmp)(2)(pnaa)](BF(4))(2) (3b) and [Cu(2)(dmp)(2)(pbbaa)](BF(4))(2) (4b) (phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, pba = N,N-bis((diphenylphosphino)methyl)benzenamine, pbaa = N,N,N',N'-tetrakis((diphenylphosphino)methyl)benzene-1,4-diamine, pnaa = N,N,N',N'-tetrakis((diphenylphosphino)methyl)naphthalene-1,5-diamine and pbbaa = N,N,N',N'-tetrakis((diphenylphosphino)methyl)biphenyl-4,4'-diamine), were rationally designed and synthesized. These complexes were characterized by (1)H and (31)P NMR, electrospray mass spectrometry, elemental analysis and X-ray crystal structure analysis. Introduction of different central arene spacers (phenyl, naphthyl, biphenyl) into ligands, resulting in the size variation of these complexes, aims to tune the photophysical properties of the complexes. Each Cu(I) ion in these complexes adopts a distorted tetrahedral geometry constructed by the chelating diimine and phosphine groups. Intermolecular C-H···π and/or π···π interactions are involved in the solid states. The dmp-containing complex exhibits better emission relative to the corresponding phen complex due to the steric encumbrance of bulky alkyl groups. Furthermore, for complexes with identical diimine but different phosphine ligands, the tendency of increased emission lifetime as well as blue-shifted emission in the solid state follows with the decrease in size of complexes. Intermolecular C-H···π interactions have an influence on the final solid state photophysical properties through vibrationally relaxed non-radiative energy transfer in the excited state. Smaller-sized complexes show better photophysical properties due to less vibrationally relaxed behavior related to flexible C-H···π bonds. Nevertheless, the tendency for increased quantum yield and emission lifetime, as well as blue-shifted emission in dilute solution goes with the increase in size of complexes. The central arene ring (phenyl, naphthyl or biphenyl) has an influence on the final photophysical properties. The larger the π-conjugated extension of central arene ring is, the better the photophysical properties of complex are. The rigid and large-sized complex 3b, with a high quantum yield and long lifetime, is the best luminophore among these complexes.  相似文献   

14.
Single-crystal X-ray structure and spectroscopic characterizations of Cu(salEen)2(ClO4)2, are reported; salEen is a Schiff base condensation product of equimolar amounts of salicylaldehyde and N,N-diethylethylenediamine. The complex crystallizes in a triclinic space group P1 with a = 12.055(4) A, b = 10.652(3) A, c = 12.701(3) A, alpha = 90.54(2) degrees, beta = 94.39(2) degrees, gamma = 91.35(3) degrees, and Z = 2. The coordination geometry around Cu(II) ion is tetrahedrally distorted square planar with salEen coordinating as a neutral bidentate ligand through N and O donor atoms (average Cu-N and Cu-O distances are 2.004 and 1.880 A, respectively). The counterion ClO4- makes H-bonding contacts with the neighboring cation moieties and forms a one-dimensional layered arrangement of the molecules. The pendent, N,N-diethylethylenediamine groups of salEen (from the centrosymmetrically related molecules) in adjacent layers interpenetrate, forming novel bilayered architectures, which are further held together by pi-pi stacking interactions. EPR studies on single crystals, in three mutually orthogonal planes, yield a rhombic g tensor (gx = 2.041(1), gy = 2.073(1), and gz = 2.220(1)) consistent with the distorted square planar geometry of the CuN2O2 moiety. The peak-to-peak line width of the EPR signal exhibits a |3 cos2 theta - 1|4/3 variation, attributable to one-dimensional magnetic exchange behavior of the complex. The analysis suggests that both the dipole-dipole and exchange interactions contribute to the line width. Interestingly, the complex is amenable for both EPR and NMR studies at ambient temperatures. The proton NMR signals are narrow in CD3CN solutions and the HOMO correlation spectroscopy (COSY) studies reveal the 1H connectivities. Nuclear spin lattice relaxation time (T1) measurements, using inversion recovery method, indicate that T1 values for all the protons are remarkably long compared to those of other mononuclear Cu(II) complexes.  相似文献   

15.
Cu(II), Co(II), Ni(II), Cd(II), and Zn(II) complexes of 6-(2-phenyldiazenyl)-7-hydroxy-4-methyl coumarin (PAHC) are characterized based on elemental analyses, infrared, 1H NMR, magnetic moment, molar conductance, mass spectra, UV-Vis analysis, thermogravimetric analysis (TGA), and X-ray powder diffraction. From the elemental analyses, it is found that the complexes have formulae [M(L)2(H2O) n ] ? xH2O (where M = Cu(II), Co(II), Ni(II), Cd(II), and Zn(II), n = 0–2, x = 1–4). The molar conductance data reveal that all the metal chelates are non-electrolytes. From the magnetic and solid reflectance spectra, it is found that the structures of these complexes are octahedral or tetrahedral. The synthesized ligand and metal complexes were screened for antibacterial activity against some Gram-positive and Gram-negative bacteria.  相似文献   

16.
Four copper complexes with hydroxylated bipyridyl-like ligands, namely [Cu(2)(ophen)(2)] (1), [Cu(4)(ophen)(4)(tp)] (2), [Cu(4)(obpy)(4)(tp)] (3), and [Cu(4)(obpy)(4)(dpdc)].2H(2)O (4), (Hophen=2-hydroxy-1,10-phenanthroline, Hobpy=6-hydroxy-2,2'-bipyridine, tp=terephthalate, dpdc=diphenyl-4,4'-dicarboxylate) have been synthesized hydrothermally. X-ray single-crystal structural analyses of these complexes reveal that 1,10-phenanthroline (phen) or 2,2'-bipyridine (bpy) ligands are hydroxylated into ophen or obpy during the reaction, which provides structural evidence for the long-time argued Gillard mechanism. The dinuclear copper(I) complex 1 has three supramolecular isomers in the solid state, in which short copper-copper distances (2.66-2.68 A) indicate weak metal-metal bonding interactions. Each of the mixed-valence copper(i,ii) complexes 2-4 consists of a pair of [Cu(2)(ophen)(2)](+) or [Cu(2)(obpy)(2)](+) fragments bridged by a dicarboxylate ligand into a neutral tetranuclear dumbbell structure. Dinuclear 1 is an intermediate in the formation of 2 and can be converted into 2 in the presence of additional copper(II) salt and tp ligands under hydrothermal conditions. In addition to the ophen-centered pi-->pi* excited-state emission, 1 shows strong emissions at ambient temperature, which may be tentatively assigned as an admixture of copper-centered d-->s,p and MLCT excited states.  相似文献   

17.
Lam WH  Cheng EC  Yam VW 《Inorganic chemistry》2006,45(23):9434-9441
Density functional theory (DFT) calculations at the hybrid Perdew, Burke, and Ernzerhof functional level were performed to study the electronic structures of the ground and excited states of the luminescent tetranuclear copper(I) complexes [Cu4(mu-dppm)4(mu4-E)]2+ [E = PPh (1) and S (2)] by using model complexes [Cu4(mu-H2PCH2PH2)4(mu4-E)]2+ [E = PPh (1a) and S (2a)]. The time-dependent DFT method at the same level associated with the conductor-like polarizable continuum model was used to study the nature of the low-energy transitions in their electronic absorption spectra. The results indicate that the lowest energy absorptions of both 1 and 2 are attributed to ligand-to-metal charge-transfer (LMCT) (E --> Cu4) with mixing of metal-cluster-centered (MCC) (3d --> 4s/3d --> 4p) singlet-singlet transitions. The geometry optimizations on the lowest energy triplet state reveal that the emissive states of both complexes involve a considerable structural distortion in which they are derived predominantly from an admixture of 3LMCT (E --> Cu4) and 3MCC (3d --> 4p) origin. In addition to the photophysical properties, the fluxional behavior of 2 observed from the NMR studies but not that of 1 was investigated. It is found that the fluxionality in 2 involves the shuttling of the sulfido ligand through the rectangular Cu4 core.  相似文献   

18.
Complexes of Cu(II) and Ni(II) of the composition [M(L)X] [where M=Ni(II), Cu(II) and X=Cl-, NO3-, CH3COO-] were synthesized with 1,5-dioxo-9,10-diaza-3,ol-tribenzo-(7,6,10,11,14,15) peptadecane, a N2O2 macrocyclic ligand. The complexes were characterized by elemental analysis, molar conductance measurements, UV-vis, IR, 1H NMR, 13C NMR, EPR and molecular modeling studies. All the complexes are non-electrolyte in nature. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and a tetragonal geometry for Cu(II) complexes.  相似文献   

19.
Synthesis of new titanium and zirconium dichloro complexes bearing malonate-based enaminoketonato (N,O) ligand is described. NMR studies of the catalyst precursors reveal that synthesized complexes have different configurational isomers in solution state and that they undergo structural change within NMR timescale. After MAO activation complexes exhibited low to moderate activities in ethylene polymerization producing bi- or multimodal polyethylenes.  相似文献   

20.
Reactions of Al(III) and Ga(III) with citric acid in aqueous solutions, yielded the complexes (NH(4))(5)[M(C(6)H(4)O(7))(2)].2H(2)O (M(III) = Al (1), Ga (2)) at alkaline pH, and the complexes (Cat)(4)[M(C(6)H(5)O(7))(C(6)H(4)O(7))].nH(2)O (M(III) = Al (3), Ga (4), Cat. = NH(4)(+), n = 3; M(III) = Al (5), Ga (6), Cat. = K(+), n = 4) at acidic pH. All compounds were characterized by spectroscopic (FT-IR, (1)H, (13)C, and (27)Al NMR, (13)C-MAS NMR) and X-ray techniques. Complex 1 crystallizes in space group P1, with a = 9.638(5) A, b = 9.715(5) A, c = 7.237(4) A, alpha = 90.96(1) degrees, beta = 105.72(1) degrees, gamma = 119.74(1) degrees, V = 557.1(3) A(3), and Z = 1. Complex 2 crystallizes in space group P1, with a = 9.659(6) A, b = 9.762(7) A, c = 7.258(5) A, alpha = 90.95(2) degrees, beta = 105.86(2) degrees, gamma = 119.28(1) degrees, V = 564.9(7) A(3), and Z = 1. Complex 3 crystallizes in space group I2/a, with a = 19.347(3) A, b = 9.857(1) A, c = 23.412(4) A, beta = 100.549(5) degrees, V = 4389(1) A(3), and Z = 8. Complex 4 crystallizes in space group I2/a, with a = 19.275(1) A, b = 9.9697(6) A, c = 23.476(1) A, beta = 100.694(2) degrees, V = 4432.8(5) A(3), and Z = 8. Complex 5 crystallizes in space group P1, with a = 7.316(1) A, b = 9.454(2) A, c = 9.569(2) A, alpha = 64.218(4) degrees, beta = 69.872(3) degrees, gamma = 69.985(4) degrees, V = 544.9(2) A(3), and Z = 1. Complex 6 crystallizes in space group P1, with a = 7.3242(2) A, b = 9.4363(5) A, c = 9.6435(5) A, alpha = 63.751(2) degrees, beta = 70.091(2) degrees, gamma = 69.941(2) degrees, V = 547.22(4) A(3), and Z = 1. The crystal structures of 1-6 reveal mononuclear octahedral complexes of Al(III) (or Ga(III)) bound to two citrates. Solution NMR, on both 4- and 5- species, reveals rapid intramolecular exchange of the bound and unbound terminal carboxylates. Upon dissolution in water, the complexes, through a complicated reaction cascade, transform to oligonuclear 1:1 species that, in agreement with previous studies, represent the thermodynamically stable state in solution. The data provide, for the first time, structural details of low MW, mononuclear complexes of Al(III) (or Ga(III)) with citrate that are dictated, among other factors, by pH. The properties of 1-6 may provide clues relevant to their biological association with humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号