首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, the assessment of new coordinated design of power system stabilizers (PSSs) and static var compensator (SVC) in a multimachine power system via statistical method is proposed. The coordinated design problem of PSSs and SVC over a wide range of loading conditions is handled as an optimization problem. The bacterial swarming optimization (BSO), which synergistically couples the bacterial foraging with the particle swarm optimization (PSO), is used to seek for optimal controllers parameters. By minimizing the proposed objective function, in which the speed deviations between generators are involved; stability performance of the system is enhanced. To compare the capability of PSS and SVC, both are designed independently, and then in a coordinated manner. Simultaneous tuning of the BSO‐based coordinated controller gives robust damping performance over wide range of operating conditions and large disturbance in compare to optimized PSS controller based on BSO (BSOPSS) and optimized SVC controller based on BSO (BSOSVC). Moreover, a statistical T test is executed to validate the robustness of coordinated controller versus uncoordinated one. © 2014 Wiley Periodicals, Inc. Complexity 21: 256–266, 2015  相似文献   

2.
This paper introduces a new hybrid algorithmic nature inspired approach based on particle swarm optimization, for solving successfully one of the most popular logistics management problems, the location routing problem (LRP). The proposed algorithm for the solution of the location routing problem, the hybrid particle swarm optimization (HybPSO-LRP), combines a particle swarm optimization (PSO) algorithm, the multiple phase neighborhood search – greedy randomized adaptive search procedure (MPNS-GRASP) algorithm, the expanding neighborhood search (ENS) strategy and a path relinking (PR) strategy. The algorithm is tested on a set of benchmark instances. The results of the algorithm are very satisfactory for these instances and for six of them a new best solution has been found.   相似文献   

3.
Metaheuristic optimization algorithms have become popular choice for solving complex and intricate problems which are otherwise difficult to solve by traditional methods. In the present study an attempt is made to review the hybrid optimization techniques in which one main algorithm is a well known metaheuristic; particle swarm optimization or PSO. Hybridization is a method of combining two (or more) techniques in a judicious manner such that the resulting algorithm contains the positive features of both (or all) the algorithms. Depending on the algorithm/s used we made three classifications as (i) Hybridization of PSO and genetic algorithms (ii) Hybridization of PSO with differential evolution and (iii) Hybridization of PSO with other techniques. Where, other techniques include various local and global search methods. Besides giving the review we also show a comparison of three hybrid PSO algorithms; hybrid differential evolution particle swarm optimization (DE-PSO), adaptive mutation particle swarm optimization (AMPSO) and hybrid genetic algorithm particle swarm optimization (GA-PSO) on a test suite of nine conventional benchmark problems.  相似文献   

4.
A multilevel image thresholding using the honey bee mating optimization   总被引:1,自引:0,他引:1  
Image thresholding is an important technique for image processing and pattern recognition. Many thresholding techniques have been proposed in the literature. Among them, the maximum entropy thresholding (MET) has been widely applied. In this paper, a new multilevel MET algorithm based on the technology of the honey bee mating optimization (HBMO) is proposed. This proposed method is called the maximum entropy based honey bee mating optimization thresholding (MEHBMOT) method. Three different methods such as the particle swarm optimization (PSO), the hybrid cooperative-comprehensive learning based PSO algorithm (HCOCLPSO) and the Fast Otsu’s method are also implemented for comparison with the results of the proposed method. The experimental results manifest that the proposed MEHBMOT algorithm can search for multiple thresholds which are very close to the optimal ones examined by the exhaustive search method. In comparison with the other three thresholding methods, the segmentation results using the MEHBMOT algorithm is the best and its computation time is relatively low. Furthermore, the convergence of the MEHBMOT algorithm can rapidly achieve and the results validate that the proposed MEHBMOT algorithm is efficient.  相似文献   

5.
In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.  相似文献   

6.
Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm driven by the simulation of a social psychological metaphor instead of the survival of the fittest individual. Based on the chaotic systems theory, this paper proposed a novel chaotic PSO combined with an implicit filtering (IF) local search method to solve economic dispatch problems. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed PSO introduces chaos mapping using Hénon map sequences which increases its convergence rate and resulting precision. The chaotic PSO approach is used to produce good potential solutions, and the IF is used to fine-tune of final solution of PSO. The hybrid methodology is validated for a test system consisting of 13 thermal units whose incremental fuel cost function takes into account the valve-point loading effects. Simulation results are promising and show the effectiveness of the proposed approach.  相似文献   

7.
The optimization algorithms which are inspired from intelligent behavior of honey bees are among the most recently introduced population based techniques. In this paper, a novel algorithm called bee swarm optimization, or BSO, and its two extensions for improving its performance are presented. The BSO is a population based optimization technique which is inspired from foraging behavior of honey bees. The proposed approach provides different patterns which are used by the bees to adjust their flying trajectories. As the first extension, the BSO algorithm introduces different approaches such as repulsion factor and penalizing fitness (RP) to mitigate the stagnation problem. Second, to maintain efficiently the balance between exploration and exploitation, time-varying weights (TVW) are introduced into the BSO algorithm. The proposed algorithm (BSO) and its two extensions (BSO–RP and BSO–RPTVW) are compared with existing algorithms which are based on intelligent behavior of honey bees, on a set of well known numerical test functions. The experimental results show that the BSO algorithms are effective and robust; produce excellent results, and outperform other algorithms investigated in this consideration.  相似文献   

8.
基于粒子群算法的非线性二层规划问题的求解算法   总被引:3,自引:0,他引:3  
粒子群算法(Particle Swarm Optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO通过粒子追随自己找到的最好解和整个群的最好解来完成优化。该算法简单易实现,可调参数少,已得到了广泛研究和应用。本文根据该算法能够有效的求出非凸数学规划全局最优解的特点,对非线性二层规划的上下层问题求解,并根据二层规划的特点,给出了求解非线性二层规划问题全局最优解的有效算法。数值计算结果表明该算法有效。  相似文献   

9.
本文针对求解旅行商问题的标准粒子群算法所存在的早熟和低效的问题,提出一种基于Greedy Heuristic的初始解与粒子群相结合的混合粒子群算法(SKHPSO)。该算法通过本文给出的类Kruskal算法作为Greedy Heuristic的具体实现手段,产生一个较优的初始可行解,作为粒子群中的一员,然后再用改进的混合粒子群算法进行启发式搜索。SKHPSO的局部搜索借鉴了Lin-Kernighan邻域搜索,而全局搜索结合了遗传算法中的交叉及置换操作。应用该算法对TSPLIB中的典型算例进行了算法测试分析,结果表明:SKHPSO可明显提高求解的质量和效率。  相似文献   

10.
In this article, a new methodology based on fuzzy proportional‐integral‐derivative (PID) controller is proposed to damp low frequency oscillation in multimachine power system where the parameters of proposed controller are optimized offline automatically by hybrid genetic algorithm (GA) and particle swarm optimization (PSO) techniques. This newly proposed method is more efficient because it cope with oscillations and different operating points. In this strategy, the controller is tuned online from the knowledge base and fuzzy interference. In the proposed method, for achieving the desired level of robust performance exact tuning of rule base and membership functions (MF) are very important. The motivation for using the GA and PSO as a hybrid method are to reduce fuzzy effort and take large parametric uncertainties in to account. This newly developed control strategy mixed the advantage of GA and PSO techniques to optimally tune the rule base and MF parameters of fuzzy controller that leads to a flexible controller with simple structure while is easy to implement. The proposed method is tested on three machine nine buses and 16 machine power systems with different operating conditions in present of disturbance and nonlinearity. The effectiveness of proposed controller is compared with robust PSS that tune using PSO and the fuzzy controller which is optimized rule base by GA through figure of demerit and integral of the time multiplied absolute value of the error performance indices. The results evaluation shows that the proposed method achieves good robust performance for a wide range of load change in the presents of disturbance and system nonlinearities and is superior to the other controllers. © 2014 Wiley Periodicals, Inc. Complexity 21: 78–93, 2015  相似文献   

11.
宋健  邓雪 《运筹与管理》2018,27(9):148-155
针对模糊不确定的证券市场,用可能性均值、下可能性方差和协方差分别替换了投资组合模型中概率均值、方差和协方差,构建了双目标均值-方差投资组合模型。然后采用线性加权法将双目标模型转化为单目标模型,进而提出了一个PSO-AFSA混合算法对其求解。该混合算法中,将粒子群算法搜索的结果作为人工鱼群算法初始鱼群,进一步搜索,这样能有效的避免粒子群算法陷入局部最优。同时,将人工鱼群中的最好位置反馈到粒子群算法的速度更新公式中,指引粒子运动,加快算法收敛。最后,进行实例分析,结果表明:PSO-AFSA混合算法是有效的,混合算法搜索到的全局最优值好于基本粒子群算法搜索到的全局最优值。  相似文献   

12.
非线性约束优化问题的混合粒子群算法   总被引:3,自引:0,他引:3  
高岳林  李会荣 《计算数学》2010,32(2):135-146
把处理约束条件的一个外点方法和改进的粒子群优化算法相结合,提出了一种求解非线性约束优化问题的混合粒子群优化算法.该方法兼顾了粒子群优化和外点法的优点,对算法迭代过程中出现不可行粒子,利用外点法处理后产生可行粒子.数值实验表明了提出的新算法具有有效性、通用性和稳健性.  相似文献   

13.
This paper proposes the hybrid NM-PSO algorithm based on the Nelder–Mead (NM) simplex search method and particle swarm optimization (PSO) for unconstrained optimization. NM-PSO is very easy to implement in practice since it does not require gradient computation. The modification of both the Nelder–Mead simplex search method and particle swarm optimization intends to produce faster and more accurate convergence. The main purpose of the paper is to demonstrate how the standard particle swarm optimizers can be improved by incorporating a hybridization strategy. In a suite of 20 test function problems taken from the literature, computational results via a comprehensive experimental study, preceded by the investigation of parameter selection, show that the hybrid NM-PSO approach outperforms other three relevant search techniques (i.e., the original NM simplex search method, the original PSO and the guaranteed convergence particle swarm optimization (GCPSO)) in terms of solution quality and convergence rate. In a later part of the comparative experiment, the NM-PSO algorithm is compared to various most up-to-date cooperative PSO (CPSO) procedures appearing in the literature. The comparison report still largely favors the NM-PSO algorithm in the performance of accuracy, robustness and function evaluation. As evidenced by the overall assessment based on two kinds of computational experience, the new algorithm has demonstrated to be extremely effective and efficient at locating best-practice optimal solutions for unconstrained optimization.  相似文献   

14.
Improved particle swarm optimization combined with chaos   总被引:25,自引:0,他引:25  
As a novel optimization technique, chaos has gained much attention and some applications during the past decade. For a given energy or cost function, by following chaotic ergodic orbits, a chaotic dynamic system may eventually reach the global optimum or its good approximation with high probability. To enhance the performance of particle swarm optimization (PSO), which is an evolutionary computation technique through individual improvement plus population cooperation and competition, hybrid particle swarm optimization algorithm is proposed by incorporating chaos. Firstly, adaptive inertia weight factor (AIWF) is introduced in PSO to efficiently balance the exploration and exploitation abilities. Secondly, PSO with AIWF and chaos are hybridized to form a chaotic PSO (CPSO), which reasonably combines the population-based evolutionary searching ability of PSO and chaotic searching behavior. Simulation results and comparisons with the standard PSO and several meta-heuristics show that the CPSO can effectively enhance the searching efficiency and greatly improve the searching quality.  相似文献   

15.
Cluster analysis is an important task in data mining and refers to group a set of objects such that the similarities among objects within the same group are maximal while similarities among objects from different groups are minimal. The particle swarm optimization algorithm (PSO) is one of the famous metaheuristic optimization algorithms, which has been successfully applied to solve the clustering problem. However, it has two major shortcomings. The PSO algorithm converges rapidly during the initial stages of the search process, but near global optimum, the convergence speed will become very slow. Moreover, it may get trapped in local optimum if the global best and local best values are equal to the particle’s position over a certain number of iterations. In this paper we hybridized the PSO with a heuristic search algorithm to overcome the shortcomings of the PSO algorithm. In the proposed algorithm, called PSOHS, the particle swarm optimization is used to produce an initial solution to the clustering problem and then a heuristic search algorithm is applied to improve the quality of this solution by searching around it. The superiority of the proposed PSOHS clustering method, as compared to other popular methods for clustering problem is established for seven benchmark and real datasets including Iris, Wine, Crude Oil, Cancer, CMC, Glass and Vowel.  相似文献   

16.
Particle swarm optimization (PSO) algorithm has been developing rapidly and many results have been reported. PSO algorithm has shown some important advantages by providing high speed of convergence in specific problems, but it has a tendency to get stuck in a near optimal solution and one may find it difficult to improve solution accuracy by fine tuning. This paper presents a dynamic global and local combined particle swarm optimization (DGLCPSO) algorithm to improve the performance of original PSO, in which all particles dynamically share the best information of the local particle, global particle and group particles. It is tested with a set of eight benchmark functions with different dimensions and compared with original PSO. Experimental results indicate that the DGLCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness of the algorithm to solve optimization problems.  相似文献   

17.
Chaotic catfish particle swarm optimization (C-CatfishPSO) is a novel optimization algorithm proposed in this paper. C-CatfishPSO introduces chaotic maps into catfish particle swarm optimization (CatfishPSO), which increase the search capability of CatfishPSO via the chaos approach. Simple CatfishPSO relies on the incorporation of catfish particles into particle swarm optimization (PSO). The introduced catfish particles improve the performance of PSO considerably. Unlike other ordinary particles, the catfish particles initialize a new search from extreme points of the search space when the gbest fitness value (global optimum at each iteration) has not changed for a certain number of consecutive iterations. This results in further opportunities of finding better solutions for the swarm by guiding the entire swarm to promising new regions of the search space and accelerating the search. The introduced chaotic maps strengthen the solution quality of PSO and CatfishPSO significantly. The resulting improved PSO and CatfishPSO are called chaotic PSO (C-PSO) and chaotic CatfishPSO (C-CatfishPSO), respectively. PSO, C-PSO, CatfishPSO, C-CatfishPSO, as well as other advanced PSO procedures from the literature were extensively compared on several benchmark test functions. Statistical analysis of the experimental results indicate that the performance of C-CatfishPSO is better than the performance of PSO, C-PSO, CatfishPSO and that C-CatfishPSO is also superior to advanced PSO methods from the literature.  相似文献   

18.
利用罚函数思想把非线性0-1整数规划问题转化为无约束最优化问题,然后把粒子群优化和罚函数方法结合构造出一个基于罚函数的混合粒子群优化算法,数值结果表明所提出的算法是有效的.  相似文献   

19.
This paper presents a co-evolutionary particle swarm optimization (PSO) algorithm, hybridized with noising metaheuristics, for solving the delay constrained least cost (DCLC) path problem, i.e., shortest-path problem with a delay constraint on the total “cost” of the optimal path. The proposed algorithm uses the principle of Lagrange relaxation based aggregated cost. It essentially consists of two concurrent PSOs for solving the resulting minimization-maximization problem. The main PSO is designed as a hybrid PSO-noising metaheuristics algorithm for efficient global search to solve the minimization part of the DCLC-Lagrangian relaxation by finding multiple shortest paths between a source-destination pair. The auxiliary/second PSO is a co-evolutionary PSO to obtain the optimal Lagrangian multiplier for solving the maximization part of the Lagrangian relaxation problem. For the main PSO, a novel heuristics-based path encoding/decoding scheme has been devised for representation of network paths as particles. The simulation results on several networks with random topologies illustrate the efficiency of the proposed hybrid algorithm for the constrained shortest path computation problems.  相似文献   

20.
A generalization of the particle swarm optimization (PSO) algorithm is presented in this paper. The novel optimizer, the Generalized PSO (GPSO), is inspired by linear control theory. It enables direct control over the key aspects of particle dynamics during the optimization process. A detailed theoretical and empirical analysis is presented, and parameter-tuning schemes are proposed. GPSO is compared to the classical PSO and genetic algorithm (GA) on a set of benchmark problems. The results clearly demonstrate the effectiveness of the proposed algorithm. Finally, an application of the GPSO algorithm to the fine-tuning of the support vector machines classifier for electrical machines fault detection is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号