首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conclusions Rhenium oxides with perovskite structure of the general formula where BIII=Y and Sm, and Ba3LaZnReWO12 containing Re(VII), exhibit catalytic activity in hydrogenation of ethyl acetate.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1236–1238, June, 1986.  相似文献   

2.
The Gibbs free energies of formation of Eu3RuO7(s) and Eu2Ru2O7(s) have been determined using solid-state electrochemical technique employing oxide ion conducting electrolyte. The reversible electromotive force (e.m.f.) of the following solid-state electrochemical cells have been measured:
The Gibbs free energies of formation of Eu3RuO7(s) and Eu2Ru2O7(s) from elements in their standard state, calculated by the least squares regression analysis of the data obtained in the present study, can be given, respectively, by:
The uncertainty estimates for Δf G o(T) include the standard deviation in e.m.f. and uncertainty in the data taken from the literature.  相似文献   

3.
As a new method, stable-isotope dilution activation analysis has been developed. When an element consists of at least two stable isotopes which are converted easily to the radioactive nuclides through nuclear reactions, the total amount of the element (xg) can be determined by irradiating simultaneously the duplicated sample containing small amounts of either enriched isotope (y g), and by using the following equation. $${{x = y\left( {{M \mathord{\left/ {\vphantom {M {M*}}} \right. \kern-\nulldelimiterspace} {M*}}} \right)\left[ {\left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)\left( {{{\theta _2^* } \mathord{\left/ {\vphantom {{\theta _2^* } {\theta _2 }}} \right. \kern-\nulldelimiterspace} {\theta _2 }}} \right) - \left( {{{\theta _1^* } \mathord{\left/ {\vphantom {{\theta _1^* } {\theta _1 }}} \right. \kern-\nulldelimiterspace} {\theta _1 }}} \right)} \right]} \mathord{\left/ {\vphantom {{x = y\left( {{M \mathord{\left/ {\vphantom {M {M*}}} \right. \kern-\nulldelimiterspace} {M*}}} \right)\left[ {\left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)\left( {{{\theta _2^* } \mathord{\left/ {\vphantom {{\theta _2^* } {\theta _2 }}} \right. \kern-\nulldelimiterspace} {\theta _2 }}} \right) - \left( {{{\theta _1^* } \mathord{\left/ {\vphantom {{\theta _1^* } {\theta _1 }}} \right. \kern-\nulldelimiterspace} {\theta _1 }}} \right)} \right]} {\left[ {1 - \left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)} \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {1 - \left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)} \right]}}$$ Where M and M* are atomic weights of the element to be determined and the enriched isotope used as a spike,θ 1 andθ 2 are natural abundances of two stable isotopes in the element,θ 1 * andθ 2 * are isotopic compositions of the above isotopes in the enriched isotope, and R and R* are counting ratios of gamma-rays emitted by two radionuclides produced in the sample and the isotopic mixture. Neither calibration standard nor correction of irradiation conditions are necessary for this method. Usefulness of the present method was verified by photon activations of Ca, Zn and Ce using isotopically enriched48ca,68Zn and142Ce.  相似文献   

4.
The kinetics of oxidation of the chromium(III)-DL- aspartic acid complex, [CrIIIHL]+ by periodate have been investigated in aqueous medium. In the presence of FeII as a catalyst, the following rate law is obeyed:
Catalysis is believed to be due to the oxidation of iron(II) to iron(III), which acts as the oxidizing agent. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO 4 - to CrIII.  相似文献   

5.
Conclusions The equivalent isothermal index which the authors proposed earlier enables substances to be identified reliably under conditions of gas Chromatographic analysis with linear temperature programming.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 679–680, March, 1970.  相似文献   

6.
The quantitative study of the equilibrium Pu4++Cl⇋Pu3++1/2 Cl2 in LiCl−KCl (70–30% mol) at 455, 500, 550 and 600°C by visible and near I.R. absorption spectrophotometry allows the calculation of the reaction's equilibrium constant, the mean thermodynamic data ΔH=27±14 kJ·mol−1 and ΔS=37±17 J·mol−1·K−1 and the standard potential of the couple .   相似文献   

7.
Summary The oxidation of H2O2 by [W(CN)8]3– has been studied in aqueous media between pH 7.87 and 12.10 using both conventional and stopped-flow spectrophotometry. The reaction proceeds without generation of free radicals. The experimental overall rate law, , strongly suggests two types of mechanisms. The first pathway, characterized by the pH-dependent rate constant k s, given by , involves the formation of [W(CN)8· H2O2]3–, [W(CN)8· H2O2·W(CN)8]6– and [W(CN)8· HO]3– intermediates in rapid pre-equilibria steps, and is followed by a one-electron transfer step involving [W(CN)8·HO]3– (k a) and its conjugate base [W(CN)8·O]4– (k b). At 25 °C, I = 0.20 m (NaCl), the rate constant with H a =40±6kJmol–1 and S a =–151±22JK–1mol–1; the rate constant with H b =36±1kJmol–1 and S b =–136±2JK–1mol–1 at 25 °C, I = 0.20 m (NaCl); the acid dissociation constant of [W(CN)8·HO]3–, K 5 =(5.9±1.7)×10–10 m, with and is the first acid dissociation constant of H2O2. The second pathway, with rate constant, k f, involves the formation of [W(CN)8· HO2]4– and is followed by a formal two-electron redox process with [W(CN)8]3–. The pH-dependent rate constant, k f, is given by . The rate constant k 7 =23±6m –1 s –1 with and at 25°C, I = 0.20 m (NaCl).  相似文献   

8.
9.
The decomposition of hydrogen peroxide in the presence of hydroxonitrilotri(methylenephosphonato)iron(III), [Fe(NTMP)(OH)4–], was studied in nitrate media (=0.10–0.26 M) over the 0.2–0.5 mM concentration range for the iron complex and the temperature range 26–40°C. The rate law;
  相似文献   

10.
Using theTorker-technique, the vapour pressures of β-Mn in the temperature range 1230–1370° K have been determined. From these measurements the heat of sublimation of α-Mn at 0° K has been obtained ΔH 0 o=67800±800 cal/g-atom. From measurements of the dissociation pressures of ZrMn2 the enthalpy ΔH 0 o of the reaction. $${1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3} Zr (s) + {2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}Mn (g) = Zr_{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} Mn_{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} (s)$$ has been evaluated. ΔH 0 o=?49150±700 cal/GFW. Combining this value with the heat of sublimation of α-Mn leads to the heat of formation of Zr1/3Mn2/3 ΔH 0 o=?3900±1200 cal/GFW.  相似文献   

11.
A study was made of the chemiluminescence in the course of initiated oxidation of sunflower oil with a luminescence activator in the presence of natural phenols. The kinetic parameters were determined, which take into account the appearance of chemiluminescence and characterize the antioxidative activity of the phenols.Translated from Zhurnal Prikladnoi Khimii, Vol. 77, No. 8, 2004, pp. 1351–1355.Original Russian Text Copyright © 2004 by Belaya, Filippenko, Nikolaevskii, Zaets.  相似文献   

12.
Beginning with rather basic principles, general relations are obtained for evaporative rate constants. These are established both as a function of energy and of temperature. In parallel with this, expressions are developed for the kinetic energy distribution of the separating species. Explicit evaluation of the rate constants in the case of “chemical” evaporation from an entity containingn monomeric units yields as a typical result $$k(T)(s^{ - 1} ) = 3 \cdot 10^{13} n^{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \exp [6/n^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ]\exp ( - \Delta E_a (n)/k_B T)$$ Experimental evidence in support of this relation is cited. Applications to thermionic emission are also noted.  相似文献   

13.
A method is proposed for determining the sizes of the pores that make the main contribution to the protein capacity. This involves constructing curves in ,R coordinates for several matrices in which the biopolymer is uniformly distributed over the volume and the surfaces are of the same chemical type but the materials differ in porous characteristics, in which is the Henry protein immobilization coefficient, sr the specific surface determined by mercury porometry as governed by the walls of pores whose radii exceed R, and is the apparent density of the corresponding matrix. The value of R for which are the most similar for several of the carriers is the minimum size of the pores that make the main contribution to the capacity for the corresponding biocatalyst. The binding of trypsin at pH 7.0 and 25°C to aminoorganosilokhrom S-80 activated with glutaraldehyde leads to a uniform distribution over the particle volume. The main contribution to the total capacity for trypsin comes from pores whose sizes are 7–8 times the hydrodynamic diameter of the enzyme macromolecule.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 28, No. 3, pp. 271–276, May–June, 1992.  相似文献   

14.
Zusammenfassung Permanganat wird in Natriumhydroxidlösungen an der rotierenden Scheibenelektrode polarographisch reversibel zu Manganat(VI) und zu Manganat(V) reduziert. Aus der Abhängigkeit der Halbwellenpotentiale der Manganat(VI)-Manganat(V)-Welle von der Hydroxylionenaktivität wurden die Hydrolysekonstante des Manganats(V) und das Normalpotential mV bestimmt.Die irreversible Reduktion von Manganat(V) zu Oxid verläuft über ein Zwischenprodukt, das elektrochemisch wieder oxydiert werden kann. Das Zwischenprodukt, wahrscheinlich hydrolysiertes, monomeres Manganat(IV), reagiert in der Lösung zu nicht mehr oxydierbaren Produkten weiter.Geschwindigkeitsbestimmend ist eine homogene Reaktion 2. Ordnung, also die Dimersierung des Manganats(IV). Die Geschwindigkeitskonstante der Dimerisierung in 5 m Natronlauge wurde zu k2=2 · 105 Liter · Mol–1 · sec–1 abgeschätzt.
Summary The reduction of permanganate to manganate(VI) and manganate(V) at the rotating disc electrode is polarographically reversible. The half-wave potentials of the manganate(VI)-manganate(V) wave depend on the hydroxyl ion activity of the solution due to the hydrolysis of manganate(V). The hydrolysis constant and the standard potential were obtained from the measurements.During the irreversible reduction of manganate(V) an intermediate is formed, probably being a hydrolysed monomer of manganate(IV). The intermediate can be reoxidized at the ring electrode. It disappears by polymerisation and precipitation as an oxide, the rate determining step being a homogeneous reaction of the second order. The rate constant of that dimerisation was estimated to be k 2=2×105 liter × mole–1 × sec–1.


Herrn Prof. Dr. M. von Stackelberg zum 70. Geburtstag gewidmet.

Der Deutschen Forschungsgemeinschaft danken wir für die Unterstützung dieser Arbeit.  相似文献   

15.
The decomposition of azodicarbonamide (Genitron AC-2) in the solid state was investigated by DSC. It was found that the decomposition under non-isothermal conditions can be described by the autocatalytic reaction scheme $$X\xrightarrow{{k_1 }}Y,X + Y\xrightarrow{{k'_2 }}2Y$$ where the following dependences hold for the rate constants: $$k_1 = 4.8 \times 10^{19} e - {{243 600} \mathord{\left/ {\vphantom {{243 600} {RT_s - 1}}} \right. \kern-\nulldelimiterspace} {RT_s - 1}}$$ and $$k'_2 = 1.0 \times 10^{13} e - {{133 500} \mathord{\left/ {\vphantom {{133 500} {RT_s - 1}}} \right. \kern-\nulldelimiterspace} {RT_s - 1}}$$ The first pre-exponential factor includes the thermal history of the sample, especially the quick heating to a certain temperature, from which normal slow heating starts. Due to this fast heating, the decomposition reaction of AZDA may be understood as the collapse of its crystal lattice into nucleation centres with critical dimensions.  相似文献   

16.
The steady-state viscosity η, the dynamic viscosity η′, and the storage modulus G′ of several high-density and low-density polyethylene melts were investigated by using the Instron rheometer and the Weissenberg rheogoniometer. The theoretical relation between the two viscosities as proposed earlier is:\documentclass{article}\pagestyle{empty}\begin{document}$ \eta \left( {\dot \gamma } \right){\rm } = {\rm }\int {H\left( {\ln {\rm }\tau } \right)} {\rm }h\left( \theta \right)g\left( \theta \right)^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}} \tau {\rm }d{\rm }\ln {\rm }\tau $\end{document}, where \documentclass{article}\pagestyle{empty}\begin{document}$ \theta {\rm } = {\rm }{{\dot \gamma \tau } \mathord{\left/ {\vphantom {{\dot \gamma \tau } 2}} \right. \kern-\nulldelimiterspace} 2} $\end{document}; \documentclass{article}\pagestyle{empty}\begin{document}$ {\dot \gamma } $\end{document} is the shear rate, H is the relaxation spectrum, τ is the relaxation time, \documentclass{article}\pagestyle{empty}\begin{document}$ g\left( \theta \right){\rm } = {\rm }\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\left[ {\cot ^{ - 1} \theta {\rm } + {\rm }{\theta \mathord{\left/ {\vphantom {\theta {\left( {1 + \theta ^2 } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + \theta ^2 } \right)}}} \right] $\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}$ h\left( \theta \right){\rm } = {\rm }\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\left[ {\cot ^{ - 1} \theta {\rm } + {\rm }{{\theta \left( {1{\rm } - {\rm }\theta ^2 } \right)} \mathord{\left/ {\vphantom {{\theta \left( {1{\rm } - {\rm }\theta ^2 } \right)} {\left( {1{\rm } + {\rm }\theta ^2 } \right)^2 }}} \right. \kern-\nulldelimiterspace} {\left( {1{\rm } + {\rm }\theta ^2 } \right)^2 }}} \right] $\end{document}. Good agreement between the experimental and calculated values was obtained, without any coordinate shift, for high-density polyethylenes as well as for a low density sample with low nw, the weight-average number of branch points per molecule. The correlation, however, was poor with low-density samples with large values of the long-chain branching index nw. This lack of coordination can be related to nw. The empirical relation of Cox and Merz failed in a similar way.  相似文献   

17.
Quantitative studies of the rate of Cu2S-formation by thioacetamide (TAA) were made with the help of the polarographic method of continuous registration at constant potential, and the following equation for the reaction rate between Cu+-ions andTAA in ammoniacal solutions was derived: 1 $$ - \frac{{d[Cu^I ]}}{{dt}} = k \cdot \frac{{[Cu^I ] \cdot [CH_3 CSNH_2 ]}}{{[NH_3 H_2 O]^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}} \cdot [H^ + ]}}\frac{{^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 4}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$4$}}} }}{{^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {10}}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{${10}$}}} }} \cdot \frac{{f_{Cu} }}{{f_{H^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {10}}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{${10}$}}} } }}$$ The value at 25.0° of the rate constantk is (1.6±0.2)·10?2 mole7/20·litre?7/20·sec?1. The validity of equation (1) has been proved over the pH range 8.5–9.5 and the ammonia concentration of 4.0·10?2–4.0·10?1 mole per litre, by only a small excess ofTAA and moderate reaction rates.  相似文献   

18.
The kinetic equation which describes many electronic as well as atomic or chemical reactions under the condition of a steadily linear raise of the temperature, is considered in a mathematically exact and straightforward way. Therefore, the equation has been transformed into a dimensionsless form, using with profit the maximum condition for the intensity peak. The two temperatures T1 and T2, corresponding to the half-height of the intensity peak, are found as unique polynomials of the small argument \(\bar y \equiv {{k\bar T} \mathord{\left/ {\vphantom {{k\bar T} E}} \right. \kern-0em} E}\) only ( \(\bar T\) =temperature of peak maximum). Thereupon, further combinations give half-widthδ, peak asymmetryA21 or \(\tilde A = {{\bar C} \mathord{\left/ {\vphantom {{\bar C} {(1 - \bar C)}}} \right. \kern-0em} {(1 - \bar C)}}\) and the maximum of the intensity peakJ; they again all depend only on¯y. In some cases this dependence is weak, so that e.g. it is deduced that the half-width energy product divided by \(\bar T^2 \) is an invariant, different for every kinetic orderπ: $$\frac{{\delta \cdot E[eV]}}{{\bar T^2 }} = \left\{ {\begin{array}{*{20}c} {{1 \mathord{\left/ {\vphantom {1 {4998 K for monomolecular process}}} \right. \kern-\nulldelimiterspace} {4998 K for monomolecular process}}} \\ {{1 \mathord{\left/ {\vphantom {1 {3542 K for bimolecular process}}} \right. \kern-\nulldelimiterspace} {3542 K for bimolecular process}}} \\ {{1 \mathord{\left/ {\vphantom {1 {2872 K for trimolecular process}}} \right. \kern-\nulldelimiterspace} {2872 K for trimolecular process}}} \\ \end{array} } \right.$$ By means of these correlations, activation energy valuesE [eV] can be determined accurately to within 0.5 %, so that for most experiments the inaccuracy of theδ values becomes dominant and limiting. A special nomogram for the express estimation ofE from experimentally observedδ and \(\bar T\) is demonstrated.  相似文献   

19.
We have recently reported that the organic bilayer of 3,4,9,10-perylenetetracarboxyl-bisbenzimidazole (PTCBI, n-type semiconductor) and 29H,31H-phthalocyanine (H2Pc, p-type semiconductor), which is a part of a photovoltaic cell, acts as a photoanode in the water phase (Abe et al., ChemPhysChem 5:716, [2004]); in that case, the generation of the photocurrent involving an irreversible thiol oxidation at the H2Pc/water interface took place to be coupled with hole conduction through the H2Pc layer, based on the photophysical character of the bilayer. In the present work, the photoelectrode characteristics of the bilayer were investigated in the water phase containing a redox molecule , where the photo-induced oxidation and reduction for the couple were found to take place at the bilayer. The photoanodic current involving the oxidation efficiently occurred at the interface of H2Pc/water, similar to the previous example. In the view of the voltammograms obtained, it was noted that there are pin-holes in the H2Pc layer of the bilayer, leading to a cathodic reaction with at the PTCBI surface especially in the dark; that is, the band bending at the PTCBI/water interface can essentially be reduced by applying a negative potential [e.g., < ∼ 0 V (vs Ag/AgCl)] to the PTCBI, when the cathodic reaction may take place through the conduction band of the PTCBI. Moreover, under that applied potential condition of irradiation, the photogenerated electron carrier part can move to the PTCBI surface, thus enhancing the reduction of .  相似文献   

20.
Résumé Des bases comprenant n=1, 2, 3, 4, 5 fonctions gaussiennes, dont les exposants rendent minimale l'énergie SCF totale, ont été déterminées pour la molécule d'hydrogène. On montre qu'il suffit d'appliquer un facteur multiplicatif constant aux exposants donnés par Huzinaga pour l'atome libre. Pour n=1, le facteur d'échelle optimal est en accord avec la valeur de s trouvée par Hirschfelder et Linnett dans un calcul en orbitales de Slater; la variation de ce facteur avec n obèit à la formule .
Optimized Gaussian bases for moleculesI. Hydrogen
Bases of n=1, 2, 3, 4, 5 Gaussian functions, whose exponents minimize the SCF total energy, have been determined for the hydrogen molecule. It is shown that a convenient process is found by applying a scaling factor to the exponents given by Huzinaga for the free atom. This optimized scaling factor agrees for n=1 with the s value reported by Hirschfelder and Linnett from a Slater-type orbital calculation; it varies with n according to the formula .

Zusammenfassung Für das Wasserstoffmolekül sind für n=1, 2, 3, 4 und 5 Basissätze von Gaußfunktionen, deren Exponenten bezüglich der SCF-Gesamtenergie optimiert wurden, bestimmt worden. Es wird gezeigt, daß eine bequeme Methode gefunden werden kann, indem man die von Huzinaga für das freie Atom bestimmten Exponenten mit einem multiplikativen Faktor versieht. Dieser optimierte Multiplikationsfaktor stimmt für n=1 mit den s -Werten überein, die Hirschfelder und Linnett mit einer Rechnung unter Zugrundelegung von STO-Funktionen erhielten; er verifiziert jedoch mit n gemäß der Formel .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号