首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A selective preparation and the formation mechanism of hexagonal and cubic CoO nanoparticles from the reaction of [Co(acac)2] (acac=acetylacetonate) and amine have been investigated. CoO nanoparticles with a hexagonal pyramidal shape were yielded under decomposition conditions with amine. Importantly, the addition of water altered the final phase to cubic and comprehensively changed the reaction mechanism. The average sizes of the hexagonal and cubic CoO nanoparticles could be controlled either by changing the amine concentration or by using different reaction temperatures. Detailed formation mechanisms are proposed on the basis of gas chromatography–mass spectrometry data and color changes of the reaction mixture. The hexagonal CoO phase is obtained through two distinct pathways: solvolysis with C C bond cleavage and direct condensation by amine. On the other hand, the cubic CoO nanoparticles were synthesized by strong nucleophilic attack of hydroxide ions from water and subsequent C C bond breaking. The resulting caboxylate ligand can stabilize a cobalt hydroxide intermediate, leading to the generation of a thermodynamically stable CoO phase.  相似文献   

2.
Hexagonal CoO nanocrystals are coarsened under hydrothermal conditions to investigate the effect of particle size on phase transformation and stability property. Structural stability and phase transformation of the hexagonal CoO phase have been investigated by X-ray powder diffraction with Rietveld refinement, transmission electron microscopy, X-ray absorption fine structure, and differential scanning calorimeter. It is found that the hexagonal CoO phase is a metastable phase, which increases its grain size from 50 to 250 nm for refluxing times from 1 to 6 h at 200 degrees C. After 12 h, cubic-structured CoO grains with an average grain size of 20 nm are observed, which spread around big hexagonal CoO grains. After about 24 h, only the cubic CoO phase with an average grain size of 25 nm is detected. The onset temperature of hexagonal-to-cubic phase transformation in CoO is estimated to be 378 degrees C by DSC, using a heating rate of 20 deg/min. The results obtained indicate that the hexagonal-to-cubic phase transformation in nanocrystalline CoO is by nucleation and growth mechanism, starting from the surface to the center of the hexagonal grains.  相似文献   

3.
Using 1,2-bis(trimethoxysilyl)ethane as organosiloxane precursor and a triblock copolymer surfactant, Pluronic F127, as template, a highly ordered mesoporous organosilica with large cagelike pores has been successfully synthesized. Its structure was resolved to be 3-D cubic Fmm by high-resolution transmission electron microscopy. The intergrowth of hexagonal close-packed and cubic close-packed phases was observed in this material. The effect of different siliceous precursors on the mesostructure was also investigated.  相似文献   

4.
《Chemical physics letters》2002,350(5-6):567-571
Cobalt oxide (CoO) nanorods were synthesized by annealing CoC2O4 precursor. The nanorods were identified by Transmission electron microscopy (TEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and other methods. The results showed that the nanorods are composed of cubic CoO with diameter of 10–80 nm, and lengths ranging from 1 to 3 μm. The mechanism of formation of CoO nanorods was also discussed.  相似文献   

5.
Manyimportantfunctionsintheprocessoflifearecloselyrelatedwiththeliquidcrystallinestateofbiomembrane.Sothestudyontheconformationoftheliquidcrystallinestateofbiomembranehasbeenoneofthefrontierdomainsoflifesciencesofar[1—4].Inrecentyears,theresultsofagoodm…  相似文献   

6.
This study constructed new curcumin-loaded lyotropic liquid crystals containing pharmaceutically accepted oil, and ethyl oleate (EtOL). Three liquid crystalline phases including lamellar, hexagonal, and cubic phases were identified by means of the polarized optical microscopy and rheology method. By analyzing the shear viscosity (η0.1), the viscosity of curcumin-liquid crystals is smaller than those without curcumin. Dynamic rheological results show that: Dissolved curcumin in EtOL can make the elastic modulus of hexagonal and cubic phase increase compared with that without curcumin, while the elastic modulus of lamellar phase decreases. Dissolved curcumin in Brij 97 can lead to the decreasing of the elastic modulus for cubic and lamellar phases, whereas it has little influence on hexagonal phase. When the curcumin is solubilized in both EtOL and Brij 97, the elastic modus of hexagonal phase increase, the elastic modus of lamellar and cubic phases decrease compared with that without curcumin. Furthermore, three temperature turning points were identified by the change in the slope of tanδ (G″/G′) for curcumin-hexagonal liquid crystal. These studies might be a help to study the storage of drug carrier and in vitro release properties of lyotropic liquid crystals containing curcumin.  相似文献   

7.
《Liquid crystals》1997,22(4):427-443
Novel amphiphilic glucamine derivatives have been synthesized. These are N-benzoyl-1-deoxy1-methylamino-D-glucitols and N-benzoyl-1-amino-1-deoxy-D-glucitols carrying one, two or three aliphatic chains (CnH2n 1O- with n 3, 6 and 12) grafted to the benzamido group. The thermotropic mesophases of these compounds were studied by thermal polarizing optical microscopy and differential scanning calorimetry, and some also by X-ray scattering. Depending on the number and the length of the alkyl chains lamellar, bicontinuous cubic, hexagonal columnar or inverted micellar cubic mesophases were detected by analogy with lyotropic systems. In the contact region between lamellar phases of the single chain amphiphiles and micellar cubic phases of the mesomorphic triple chain compounds, hexagonal columnar phases can be induced. A hexagonal columnar phase was also induced in the contact region between a bicontinuous and a micellar cubic mesophase. The lyotropic liquid crystalline behaviour of the dodecyloxy substituted N-benzoyl-1-deoxy-1-methylamino-D-glucitols was investigated by the solvent penetration method using ethylene glycol as protic solvent. On increasing the solvent content, the double chain compound forms a cubic and a lamellar mesophase and the triple chain compound forms a hexagonal columnar lyomesophase. The dodecyloxy substituted compounds were also investigated with respect to their behaviour as thin films at the air-water interface using a Langmuir film-balance. Different types of pi/Aisotherms were observed whereby the molecular areas at collapse were determined either by the size of the carbohydrate head group (single chain compounds) or by the number of alkyl chains (double and triple chain compound).  相似文献   

8.
The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.  相似文献   

9.
The diffusion of both water and surfactant components in aqueous solutions of the nonionic surfactant "C12E6"--which includes hexagonal, cubic, lamellar, and micellar mesophases--has been studied by pulsed-field-gradient NMR. Diffusion coefficients were measured in unaligned samples in all of these phases. They were also obtained in the hexagonal and lamellar phases in oriented monodomain samples that were aligned by slow cooling from the micellar phase in an 11.7 T magnet. Measured water and soap diffusion coefficients in the NMR-isotropic cubic and (high-water-content) micellar phases as well as diffusion anisotropy measurements in the magnetically aligned hexagonal phase were quantitatively consistent with the constituent structures of these phases being identical surfactant cylinders, with only the fraction of surface-associated water varying with the water-soap molar ratio. The values of the water and soap diffusion coefficients in the oriented lamellar phase suggest an increase in defects and obstructions to soap diffusion as a function of increasing water content, while those in the low-water-content micellar phase rule out the presence of inverse micelles.  相似文献   

10.
We use a kinetic lattice-Boltzmann method to simulate the self-assembly of the cubic primitive (P), diamond (D), and gyroid (G) mesophases from an initial quench composed of oil, water, and amphiphilic particles. Here, we also report the self-assembly of the noncubic hexagonal phase and two lamellar phases, one with periodic convolutions. The periodic mesophase structures are emergent from the underlying conservation laws and quasi-molecular interactions of the lattice-Boltzmann model. We locate regions of the model's parameter space where the sequence of appearance of mesophases lamellar --> primitive --> hexagonal is in agreement with pressure jump experiments and the sequence cubic --> lamellar is in agreement with compositional variations reported in the literature. The ability of our lattice-Boltzmann model to simulate self-assembly of cubic and noncubic phases in a unified and consistent manner opens the way for further investigations into the transition pathways and kinetics of the phase transitions between these states as well as of the rheology of these phases.  相似文献   

11.
The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope.  相似文献   

12.
Powder X-ray diffraction (PXRD) measurements on rapid freezing samples of disaccharide (trehalose, sucrose, and maltose) solutions indicated that the crystalline phases in the sample were both hexagonal and cubic ice. The cubic ice existed at a higher ratio in the higher disaccharide concentration samples. The temperature ramping experiments revealed that the cubic ice was stable below 233 K, which was obviously higher than the temperature expected for a pure water system. The diffraction peak width of the hexagonal ice crystal was independent in the disaccharide concentrations. This indicated that the crystallite size of the hexagonal ice was more than several hundreds of nanometre, which coincided with the ice particle size previously observed in the freeze-fractured replica samples. The comparison of the present PXRD data with the replica observations by transmission electron microscope in an earlier study allows us to conclude that the cubic ice was formed at the grain boundary between the hexagonal ice and the coexisted non-crystalline disaccharide phase.  相似文献   

13.
《Liquid crystals》1997,23(1):147-153
Freeze-fracture electron microscopy has been applied to study thermotropic columnar and cubic phases of a polycatenar liquid crystal of silver(I). The columnar phases displayed hexagonal type II characteristic fracture planes. The cubic phases showed a fracture behaviour highly characteristic of the Ia 3 d type II (Q230II) cubic space group, namely the high frequency of well ordered domains perpendicular to the \[2 1 1] crystallographic axis and, much less frequently, the fragmented aspect of domains perpendicular to the \[1 1 0] crystallographic axis. For both types of domain, the observed 2-D lattice parameters were in excellent agreement with the ideal values expected for the Q230 cubic space group.  相似文献   

14.
《Liquid crystals》1998,24(1):105-116
We have performed time resolved diffraction experiments in order to obtain a better insight upon the metastable phases surrounding some thermotropic mesophases of cubic Ia 3 d and Im 3 m symmetries. These metastable phases are columnar hexagonal, smectic or tetragonal, depending on the nature of the mesogenic molecule. Moreover, it appears that the structure of the cubic phase of the 4-alkyloxybiphenyl-4-carboxylic acids previously labelled smectic D varies with the lateral group substituted on the biphenyl core.  相似文献   

15.
A comparative study of the band structure and magnetic properties of the hexagonal and cubic modifications of aluminum nitride doped with boron, carbon, and oxygen in the nitrogen sublattice has been performed using the ab initio FLAPW-GGA method. Preliminary conclusions on the comparative chemical activity of these phases are drawn from estimates for the energies of substitution of nitrogen atoms by dopants. It has been shown that the doping with boron and nitrogen leads to transition of hexagonal AlN into a magnetic state with high spin polarization of near-Fermi electrons, but for cubic AlN, this effect is absent.  相似文献   

16.
Mixed surfactant systems have the potential to impart controlled combinations of functionality and pore structure to mesoporous metal oxides. Here, we combine a functional glucopyranoside surfactant with a cationic surfactant that readily forms liquid crystalline mesophases. The phase diagram for the ternary system CTAB/H(2)O/n-octyl-beta-D-glucopyranoside (C(8)G(1)) at 50 degrees C is measured using polarized optical microscopy. At this temperature, the binary C(8)G(1)/H(2)O system forms disordered micellar solutions up to 72 wt% C(8)G(1), and there is no hexagonal phase. With the addition of CTAB, we identify a large area of hexagonal phase, as well as cubic, lamellar and solid surfactant phases. The ternary phase diagram is used to predict the synthesis of thick mesoporous silica films via a direct liquid crystal templating technique. By changing the relative concentration of mixed surfactants as well as inorganic precursor species, surfactant/silica mesostructured thick films can be synthesized with variable glucopyranoside content, and with 2D hexagonal, cubic and lamellar structures. The domains over which different mesophases are prepared correspond well with those of the ternary phase diagram if the hydrophilic inorganic species is assumed to act as an equivalent volume of water.  相似文献   

17.
Nanometer-sized mixed metal oxide (MMO) particles (Zn1-xMgxO) with very precise stoichiometry are prepared employing a polymer-based method. The precursor is formed by loading a polyacrylate with metal ions followed by purification of the polymer metal ion complex via repeated precipitation/redissolution cycles. Calcination of the polymer precursor at 550 degrees C gives particles of the metastable solid solution of the ZnO/MgO system in the composition range (x<0.2 and x>or=0.82). The MMO crystal particles are typically 20-50 nm in diameter. Doping of the ZnO by Mg2+ causes a shrinkage of lattice parameter c. Effects of band gap engineering on the optical band gap are reported. The photoluminescence in the visible is also affected, and its maximum shifts from 2.12 eV (pure ZnO) to 2.32 eV at x=0.21. The crystalline MMO particles start to undergo segregation into hexagonal and cubic phases upon annealing at 800 degrees C.  相似文献   

18.
Aqueous dispersions of colloidal aggregates of liquid-crystalline lipid-water phases are described. The lamellar liquid-crystalline phase can form liposomal dispersions, which are wellknown from extensive studies of these particles in drug delivery. Less is known about dispersions of cubic and hexagonal phases. The preparation of such colloidal dispersions, their structure and physical properties are summerised. The dispersed cubic phase is compared to liposomal dispersions, and it is concluded that an important application of the cubic particles will involve encapsulation of proteins and protection of their native conformation.  相似文献   

19.
A series of Co doped lanthanum silicate apatite-type phases, La9.83Si4.5Co1.5O26, La9.66Si5CoO26, La10Si5CoO26.5 and La8BaCoSi6O26, have been synthesised, and neutron diffraction, EXAFS and XANES used to investigate their structures in detail. All compositions were shown to possess the hexagonal apatite structure, and the results confirmed that cobalt can be doped onto both the La and Si sites within the structure depending on the starting composition. The Co doping is shown to cause considerable local distortions within the apatite structure. In the case of Si site doping two compositions showed anisotropic peak broadening, which has been attributed to incommensurate ordering of oxygen within the apatite channels.  相似文献   

20.
Monoglyceride (MO) can form various liquid crystalline phases spontaneously in the presence of various amount of water at room temperature. The appropriate compositions from binary phase diagram of MO/H2O were selected to form cubic phases. The selected systems were studied at different salt concentrations and pH value using rheological methods. There was a weak effect of salt on viscoelastic properties of cubic phases formed from MO/H2O system. Hexagonal phase was formed when pH value was decreased or increased. The viscoelasticity of cubic phases was different from that of hexagonal liquid crystals. Rheological properties of MO/H2O cubic phases were stable at pH and salt concentration similar to physiological condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号